[過去ログ] Inter-universal geometry と ABC予想 (応援スレ) 49 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
715
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/10/31(土)15:30 ID:YFnoOBTS(1/2)調 AAS
>>714
ありがとう
読んだ
それ面白いな
下記とほぼ一致だね

IUTを読むための用語集資料集スレ
2chスレ:math

”q(=e^2πiτv)展開”は、IUTの論文内部では、”q-parameter” 又は、”q パラメータ” と称するようですね(下記)(^^

(参考)
http://www.kurims.kyoto-u.ac.jp/~motizuki/Alien%20Copies,%20Gaussians,%20and%20Inter-universal%20Teichmuller%20Theory.pdf
The Mathematics of Mutually Alien Copies: from Gaussian Integrals to Inter-universal Teichmuller Theory. PDF NEW !! (2020-04-04)
P3
“elliptic curve” whose q-parameters are the N-th powers “q^N ” of the
q-parameters “q” of the given elliptic curve is roughly equal to the height of the
given elliptic curve, i.e., that, at least from the point of view of [global] heights,
q^N “≒” q
[cf. §2.3, §2.4].

https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/244783/1/B76-02.pdf
星裕一の論文 宇宙際 Teichmuller 理論入門 PDF (2019)
P81
(b) 楕円曲線の q パラメータの (1 より大きい) ある有理数による巾
P92
Ev の q パラメータ (良い還元を持つ有限素点や無限素点では 1) とし
ます. すると, この q パラメータの集まり

は F 上の数論的直線束

を定める (つまり, L は “qE^-1 から定まる数論的因子に付随する数論的直線束”)

http://www.kurims.kyoto-u.ac.jp/~gokun/DOCUMENTS/abc2019Jul5.pdf
山下剛サーベイA proof of the abc conjecture after Mochizuki.preprint. Go Yamashita last updated on 8/July/2019
P27
(4) l is a prime number l ≧ 5 such that l is prime

the q-parameters of EF
P39
where E has bad reduction with q-parameter qE,v

where qE,v = e^2πiτv and τv is in the upper half plane.
(引用終り)
716
(1): 2020/10/31(土)16:58 ID:CLm9DCft(1)調 AAS
>>715
>数論的因子に付随する数論的直線束

因子も知らんくせにコピペすんなよ

因子 (代数幾何学)
https://ja.wikipedia.org/wiki/%E5%9B%A0%E5%AD%90_(%E4%BB%A3%E6%95%B0%E5%B9%BE%E4%BD%95%E5%AD%A6)

因子(いんし; divisor)とは、代数幾何学や複素幾何学において、代数多様体(または複素解析空間)の余次元1の部分多様体の形式的有限和のことをいう。
因子は、代数多様体や解析空間上の有理関数あるいは有理型関数の極や零点の分布を表すために用いられる(概説参照)。
線形同値な因子の空間である線形系を考えることは、射影空間への有理写像を考えることと1対1に対応しているので、代数多様体(または複素解析空間)の代数幾何的な性質・情報を取り出すときに欠かせない概念である。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.041s