[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
99(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/02(日)20:22 ID:NrBYtRST(5/8)調 AAS
>>92 補足
> 2.時枝のキモは、ある有限のDをうまく選ぶと、確率99/100で、D >= d とできるというもの
これ ”ある有限のD”、下記 時枝記事 にあります(^^
時枝問題(数学セミナー201511月号の記事)より
”何らかの事情によりdが知らされていなくても,あるD>=d についてsD+1, sD+2,sD+3,・・・
が知らされたとするならば,それだけの情報で既に r = r(s)は取り出せ, したがってd= d(s)も決まり,
結局sd (実はsd,sd+1,・・・,sD ごっそり)が決められることに注意しよう.”
(参考引用)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む80
2chスレ:math
時枝問題(数学セミナー201511月号の記事)
(抜粋)
sとrとがそこから先ずっと一致する番号をsの決定番号と呼び,d = d(s)と記す.
つまりsd,sd+1,sd+2,・・・を知ればsの類の代表r は決められる.
更に,何らかの事情によりdが知らされていなくても,あるD>=d についてsD+1, sD+2,sD+3,・・・
が知らされたとするならば,それだけの情報で既に r = r(s)は取り出せ, したがってd= d(s)も決まり,
結局sd (実はsd,sd+1,・・・,sD ごっそり)が決められることに注意しよう.
(引用終り)
以上
100: 2020/08/02(日)21:04 ID:Gy6y7tWX(4/5)調 AAS
>>99
>”何らかの事情によりdが知らされていなくても,あるD>=d についてsD+1, sD+2,sD+3,・・・
>が知らされたとするならば,それだけの情報で既に r = r(s)は取り出せ, したがってd= d(s)も決まり,
>結局sd (実はsd,sd+1,・・・,sD ごっそり)が決められることに注意しよう.”
この文章だけから
「ある有限のDをうまく選ぶと、確率99/100で、D >= d とできる」
は読めませんが
日本人ですか?
101(1): 2020/08/02(日)21:14 ID:Gy6y7tWX(5/5)調 AAS
>>99
2chスレ:math
>さて, 1〜100 のいずれかをランダムに選ぶ.
>例えばkが選ばれたとせよ.
>s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない.
(中略)
>s^1〜s^(k-l),s^(k+l)〜s^100の決定番号のうちの最大値Dを書き下す.
(中略)
>いま
> D >= d(s^k)
>を仮定しよう.
>この仮定が正しい確率は99/100,
>そして仮定が正しいばあい,
>上の注意
>「あるD>=d についてsD+1, sD+2,sD+3,・・・
> が知らされたとするならば,それだけの情報で既に r = r(s)は取り出せ,
> したがってd= d(s)も決まり,結局sd (実はsd,sd+1,・・・,sD ごっそり)が決められる」
>によってs^k(d)が決められるのであった.
あくまで
d(s_k)とD(s^k)(=k以外の列の決定番号の最大値)
に対して、条件
D(s^k)>=d(s_k)
を満たさない列はたかだか1つ、であるから
上記の条件が成り立つ列を選ぶ確率が99/100
としか読めないが
(それ以外の読み方は確実に誤りだと断言できる)
104(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/02(日)23:03 ID:NrBYtRST(8/8)調 AAS
>>99 補足
(引用開始)
時枝問題(数学セミナー201511月号の記事)より
”何らかの事情によりdが知らされていなくても,あるD>=d についてsD+1, sD+2,sD+3,・・・
が知らされたとするならば,それだけの情報で既に r = r(s)は取り出せ, したがってd= d(s)も決まり,
結局sd (実はsd,sd+1,・・・,sD ごっそり)が決められることに注意しよう.”
(引用終り)
ここの記述の
”何らかの事情によりdが知らされていなくても,
あるD>=d についてsD+1, sD+2,sD+3,・・・
が知らされたとするならば,”
は、なにかの手段(その手段については、記事の後段で出てくる)で
”D>=d ”なる Dが知らされたとするならば
ということです
しかし、非正則分布では、積分(あるいは和)が、発散しますから
どんな有限値Dを知っても、それをもって確率計算をすることは
できないのです
QED
(^^;
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.030s