[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
90
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/02(日)09:24 ID:NrBYtRST(1/8)調 AAS
>>86 補足
(引用開始)
さて
M→∞の別な例をあげましょう
ブラックジャックというトランプゲームがあります。(下記)
これを単純化して、1〜Mの自然数のカードが各1枚ある
単純に大きい数を引いた人が勝ちとする
XとYさん2名。
Xさんが先にカードを引く。もし、その数がMなら必勝で、1なら必敗。M/2未満なら勝てる確率が低くなる
M/2を基準として、M/2を下回る程度が大きければ、どんどん勝てる確率が低くなる
(引用終り)

1.例えば、Mが100点満点の試験の点数だと考えましょう
 XとYさん2名。Xさんが、100点を取れば勝ったと思い、0点や1点なら、負けたと思うでしょう

2.ところが、点数の上限がなく、M→∞に渡るとすると、100点取っても、1億点の人も、1兆点、あるいは100兆点もあるとしたら
 100点じゃあ、負けたなとなる
 (Yさんについても、同じことが言えるので、勝ち負けの事前予測(確率計算)ができない(数学としては確率計算は矛盾(和が1にならないとか)))

3.さて、M→∞で減衰しない(減らない)場合、いくらでも高得点が可能な場合は、非正則分布になって、上記のように、確率計算ができない分布になります
 一方、正規分布のように、M→∞である速さで減衰する場合は、正則な分布になるので、確率計算可能です

4.時枝記事の決定番号は、M→∞で減衰しない場合(非正則分布)に当たります
QED
(^^
91
(1): 2020/08/02(日)10:09 ID:A3naNbKA(1/2)調 AAS
>>90
数当てに使う決定番号は100個の定数なのになんで∞が出て来るんですか?
まさか100=∞という新理論ですかー?

100個の決定番号のうち単独最大はたかだか1個である Y/N

逃げずに答えて下さいねー
92
(9): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/02(日)16:49 ID:NrBYtRST(2/8)調 AAS
>>90 補足

時枝記事(>>7 ご参照)では
決定番号dなるものを使う

1.決定番号dの範囲は、有限では収まらない。1〜∞ を渡る
2.時枝のキモは、ある有限のDをうまく選ぶと、確率99/100で、D >= d とできるというもの
3.もし、決定番号dが、正規分布のように、dの大きなところで、早く減衰して、d→∞ で その頻度が0になる場合は、正則分布になり、確率計算は正当化できる
4.一方、時枝記事の決定番号dは、減衰しない。だから、非正則分布になり、確率測度として正当化できず、確率計算に使えない(∵確率の和を1に出来ないなど)
 卑近な例では、>>90で説明したような、試験の点数で 点数の上限がなく、いくらでも高得点者が居るような場合
 ある有限のD点を基準として、それより点数に低い人は何パーセントと言っても、いくらでも高得点者が居るような場合は、確率計算に乗りませんね
5.それを、数学的にきちん詳しくと論じているのが、mathoverflowの二人の数学Drです

>>28より再録)
https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice
Probabilities in a riddle involving axiom of choice Denis氏 Dec 9 '13
(抜粋)
answered Dec 9 '13 at 17:37 Math Dr. Tony Huynh氏
・・・If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist.
(引用終り)

Math Dr. Tony Huynh氏も分かっている
”If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist.”

つまり
”If it were somehow possible to put a 'uniform' measure on the space of all outcomes”が実現できれば なのだが
'uniform' measure=一様分布 (「一様分布」は、>>67の非正則事前分布の説明に出てくるね)

つづく
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.027s