[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
9(11): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/07/18(土)10:20 ID:ywyns0bH(8/11)調 AAS
>>8
前スレより
2chスレ:math
補足
<反例証明2>
1.時枝の戦略で、100列並べる前のある箱 m (=100d+k :並べ変えた100列中のk列のd番目の箱)
が、99%の確率で的中できるとして、時枝戦略による予想では、その箱の数がA0だと示されたとする
2.ところで、時枝記事では、箱に入れる数は、どの箱も出題者の自由だった
3.そこで、>>878と同じようにIIDを仮定すると、そのm番目に入れる数もまた、時枝記事のルール上自由だ
よって、そのm番目以外を固定したとして
・m番目に コイントスで数を入れれば 数の範囲は 0 or 1 の整数で、的中確率は1/2
(もし、表が出れば ある実数x、裏なら別の実数y を入れるとすれば、的中確率は1/2のままだが、数の範囲は実数全体)
・m番目に サイコロで数を入れれば 数の範囲は1〜6の整数で、的中確率は1/6
・m番目に 区間[0,1]の一様分布の数を入れれば 数の範囲は0〜1の実数で、的中確率は0 (上記のコイントスの実数版に類似)
4.明らかに、上記3は 1の時枝の反例である(99%の確率で的中など、実現できないことは明白)
QED
(^^;
10(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/07/18(土)10:22 ID:ywyns0bH(9/11)調 AAS
>>9
前スレより
2chスレ:math
補足
<時枝戦略が一見正しいように見える仕掛け>
・時枝戦略が不成立など、高校生でも直観で分かる
・IID 独立同分布なのに、あるm番目の箱のみ的中確率99%などなりようがない
・IID 独立同分布なのに、あるm番目の箱の数を、m番目以外の他の箱を開けて、推測が出来たり、推測の手がかりが得られることはない
・そんなことは、高校生でも分かることだが、ではなぜ当たるように見えるのか? そのトリックは?
・おそらく、可算無限個の箱にトリックがある
1.いま、(例えば100列の)箱の長さがn(個)とする
2.決定番号d (範囲は1<=d<=n) として、dが 範囲 1〜j (j<n) にある確率は、p=j/n である
3.さて、j はある有限の自然数とし、かつ、簡単に分母nは自然数N全体で一様分布とすると、 時枝記事に合わせて n→∞ を考えて、lim n→∞ p (j/n) =0
4.つまり、決定番号dがある有限j 以下である確率は0(その事象が生じないわけではない)
確率は0だが、その事象が生じないわけではない。が、「確率0」だということがなかなか見えない
5.そして、簡単な計算で分かることだが、分母nは自然数N全体を渡るが、一様分布ではなくボトムヘビーの分布になる
6.だから、一見当たるように見えるだけで、実は当たらない(「確率0」が効いている)
(なお、当たらないことの数学的証明は、すでに述べたように、もっと簡単に反例の存在により、すでに示しめしている(>>896など))
(参考)
https://ja.wikipedia.org/wiki/%E6%9D%A1%E4%BB%B6%E4%BB%98%E3%81%8D%E7%A2%BA%E7%8E%87
条件付き確率
(抜粋)
B の測度が 0 の場合が問題である。
この方法はボレル-コルモゴロフのパラドックス(英語版)が生じる。
(引用終り)
以上
15: 2020/07/18(土)14:02 ID:34X7G75E(5/8)調 AAS
>>9
>1.時枝の戦略で、100列並べる前のある箱 m (=100d+k :並べ変えた100列中のk列のd番目の箱)
> が、99%の確率で的中できるとして
この仮定、間違っています。(>>14)
間違った仮定から間違った結論を導いてもナンセンスなだけです。
時枝記事について語りたいなら正しく読むことから始めましょう。
18: 2020/07/18(土)17:57 ID:MUPMdT1w(1/3)調 AAS
84スレ
2chスレ:math
に、ここの>>7-10を抜粋引用の上、徹底的に反駁してやったので読めw
169(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/09/12(土)17:41 ID:cnqeiEp4(1)調 AAS
>>160 補足
時枝(>>7)が成立しないことは、大学教程の確率論・確率過程論を、学んだ人にはすぐ分かる
呪文は、IID(独立同分布)(>>8-9)!
1.独立だから、問題の箱以外を開けても、問題の箱とは無関係
2.同分布だから、どの箱も、別の確率になることはない
さらに、おかしなこと
1.箱の数として、ある確率現象を考える。コイントスの0,1なら確率1/2
サイコロで1〜6の数なら確率1/6
閉区間[0,1]の一様分布の実数1点的中は、確率0(∵零集合だから)
2.ところが、時枝さんの方法では、確率現象の依存性が消えてしまっている
どんな確率現象でも、一律99%。これはおかしい
なぜ、こんなおかしな事が?
それは、思わず知らず 非正則な分布の上で、確率計算をしてしまっているから(>>160)です(^^
181: 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/09/17(木)10:59 ID:mTCCJp7z(1)調 AAS
ガダルカナル・タカさん、元気かな〜?
最近みないけど
戦艦「時枝」は、IID(独立同分布)(>>8-9)弾一発で、瞬殺・轟沈しましたぁ〜!w(^^
https://ja.wikipedia.org/wiki/%E3%82%AC%E3%83%80%E3%83%AB%E3%82%AB%E3%83%8A%E3%83%AB%E3%83%BB%E3%82%BF%E3%82%AB
ガダルカナル・タカ(Guadalcanal Taka、1956年12月16日 - )は、日本のお笑いタレント。本名は井口 薫仁(いぐち たかひと)。
株式会社TAP所属で、ビートたけし率いるたけし軍団の一員。血液型B型。
妻はフリーアナウンサーの橋本志穂。
日本テレビ系列『お笑いスター誕生』等で活躍。同番組で知り合ったツーツーレロレロ(そのまんま東・大森うたえもん)に、たけし軍団の草野球に助っ人として誘われ、参加する中で、たけしに軍団に加わる事を打診され加入した。枝豆と共に軍団入りし、同時にコンビ活動を停止。
1986年12月8日 - 9日にフライデー襲撃事件に参加し、暴行容疑で大塚警察署に現行犯逮捕。謹慎後に復帰。
以後、『スーパージョッキー』など、たけしの番組において、たけし軍団の大番頭的ポジションで出演しつつ、ピンのタレントとしては、ローカル局・UHF局の番組でMCとして出演を重ね、キャリアを積む。
話術の巧みさを買われ「スーパーサブ」的なポジションでゲスト出演することも多い。NHKからも声がかかっており、さらに『なるトモ!』、『情報ライブ ミヤネ屋』といった在阪準キー局制作番組にもレギュラー出演し、特に、関西ローカル番組では重宝されている。
妻の橋本志穂(当時福岡放送アナウンサー)とは、北九州市のスペースワールドでのイベントで共演し知り合った。
出演
183(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/09/20(日)23:40 ID:w0R3FJMo(1)調 AAS
1.不成立の証明は、反例を一つ提示すれば、終わる
時枝に対し、IID(独立同分布)(>>8-9)が、反例になる
それで、証明は終わっている
・独立だから、他の箱を開けてもだめ
・同分布だから、サイコロを使えば、確率1/6にしかならない。99/100にはならない
2.時枝の記事の後半で、おかしなこと
1)数列のシッポだから、ビタリ風の非可測集合と即断しているが、そもそも可算無限次元のR^∞には、計量が入らない(自乗総和が無限大に発散する)
計量を入れるなら、ヒルベルト空間などに制限する必要があるが、そこの問題ではない
時枝戦略の本質的問題点は、決定番号の分布が非正則分布になり、確率計算ができないことにある
2)確率変数の独立の定義に、イチャモンつけている
しかし、「確率変数の無限族は,任意の有限部分族が独立のとき,独立, と定義される」という表現は、コンパクト性定理でも使われている表現で、まっとうなものです
(下記 渕野 などご参照)
時枝氏の書いていることは、ちょっと変です
3.結局、時枝記事の戦略は成り立ちません!
(参考)
https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88
ヴィタリ集合
https://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%B3%E3%83%91%E3%82%AF%E3%83%88%E6%80%A7%E5%AE%9A%E7%90%86
コンパクト性定理
コンパクト性定理とは、一階述語論理の文の集合がモデルを持つこと(充足可能であること)と、その集合の任意の有限部分集合がモデルを持つことが同値であるという定理である
つまりある理論の充足可能性を示すにはその有限部分についてのみ調べれば良いという非常に有用性の高い定理であり、モデル理論における最も基本的かつ重要な成果のひとつである
https://fuchino.ddo.jp/kobe/jyohokiso-2012-compactness.pdf
有限から無限への移行原理としての命題論理 渕野昌 2012
P7
命題論理のコンパクト性定理
定理1 Tのすべての有限部分集合が充足可能なら T も充足可能である
コンパクト性定理は,無限の性質が本質的かかわっている定理である
命題論理のコンパクト性定理は,有限の世界で成立する命題のアナロジーが無限の世界でも成立することを証明するときの強力な道具の1つとなる
184: 2020/09/21(月)02:08 ID:/oh0cClf(1/3)調 AAS
>>183
>不成立の証明は、反例を一つ提示すれば、終わる
その通り。
>時枝に対し、IID(独立同分布)(>>8-9)が、反例になる
これは酷い。
箱入り無数目における反例とは勝つ戦略が存在しない実数列だよ。
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.
今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう.
どの箱を閉じたまま残すかはあなたが決めうる.
勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け.
勝つ戦略はあるでしょうか?」
↑
この文章からそれが読み取れないようじゃ数学の前に国語を勉強した方がよいのでは?
193(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/09/22(火)11:10 ID:qkl/9znF(1/2)調 AAS
>>188 再録
(引用開始)
1.不成立の証明は、反例を一つ提示すれば、終わる
時枝に対し、IID(独立同分布)(>>8-9)が、反例になる
それで、証明は終わっている
・独立だから、他の箱を開けてもだめ
・同分布だから、サイコロを使えば、確率1/6にしかならない。99/100にはならない
(引用終り)
ようやく分かってきたのかな?
(>>177より)
>>175
証明は100年前に終わっているが、
そこには大学教程の
確率論・確率過程論の確率変数の概念が使われている
確率変数の概念が分からない人には、
理解できないだけのこと
です
(引用終り)
の意図が
(>>175)
おサルが二匹か
まあ、時枝が分かるためには
大学教程の確率論・確率過程論を学ぶのが先
確率変数の概念も分からんようじゃ、議論にならん
と言って、私が、ここで、
大学教程の確率論・確率過程論を教えるわけにはいかないのは、当然のこと
まあ、教えてもね
チンパンジーにアインシュタインの相対性理論を教えるが如しかもな
自分で勉強してもらうしかないが
どうも、ムリみたいだな
そういうことです
195(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/09/22(火)12:14 ID:qkl/9znF(2/2)調 AAS
>>188 再録
(引用開始)
1.不成立の証明は、反例を一つ提示すれば、終わる
時枝に対し、IID(独立同分布)(>>8-9)が、反例になる
それで、証明は終わっている
・独立だから、他の箱を開けてもだめ
・同分布だから、サイコロを使えば、確率1/6にしかならない。99/100にはならない
(引用終り)
(>>169より)
時枝(>>7)が成立しないことは、大学教程の確率論・確率過程論を、学んだ人にはすぐ分かる
呪文は、IID(独立同分布)(>>8-9)!
1.独立だから、問題の箱以外を開けても、問題の箱とは無関係
2.同分布だから、どの箱も、別の確率になることはない
さらに、おかしなこと
1.箱の数として、ある確率現象を考える。コイントスの0,1なら確率1/2
サイコロで1〜6の数なら確率1/6
閉区間[0,1]の一様分布の実数1点的中は、確率0(∵零集合だから)
2.ところが、時枝さんの方法では、確率現象の依存性が消えてしまっている
どんな確率現象でも、一律99%。これはおかしい
なぜ、こんなおかしな事が?
それは、思わず知らず 非正則な分布の上で、確率計算をしてしまっているから(>>160)です(^^
203(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/10/01(木)15:15 ID:7fZLD5Mp(1/2)調 AAS
再録
(引用開始)
1.不成立の証明は、反例を一つ提示すれば、終わる
時枝に対し、IID(独立同分布)(>>8-9)が、反例になる
それで、証明は終わっている
・独立だから、他の箱を開けてもだめ
・同分布だから、サイコロを使えば、確率1/6にしかならない。99/100にはならない
(引用終り)
(>>169より)
時枝(>>7)が成立しないことは、大学教程の確率論・確率過程論を、学んだ人にはすぐ分かる
呪文は、IID(独立同分布)(>>8-9)!
1.独立だから、問題の箱以外を開けても、問題の箱とは無関係
2.同分布だから、どの箱も、別の確率になることはない
さらに、おかしなこと
1.箱の数として、ある確率現象を考える。コイントスの0,1なら確率1/2
サイコロで1〜6の数なら確率1/6
閉区間[0,1]の一様分布の実数1点的中は、確率0(∵零集合だから)
2.ところが、時枝さんの方法では、確率現象の依存性が消えてしまっている
どんな確率現象でも、一律99%。これはおかしい
なぜ、こんなおかしな事が?
それは、思わず知らず 非正則な分布の上で、確率計算をしてしまっているから(>>160)です(^^
(積分範囲が、∞になる場合は、裾が1/xつまり、指数でいえば-1乗よりも早く減衰しないと、積分値は発散します。下記 裾の重い分布などご参照)
なお、(>>183より再録)時枝の記事の後半で、おかしなことが書いてある
1)数列のシッポだから、ビタリ風の非可測集合と即断しているが、そもそも可算無限次元のR^∞には、計量が入らない(自乗総和が無限大に発散する)
計量を入れるなら、ヒルベルト空間などに制限する必要があるが、そこの問題ではない
時枝戦略の本質的問題点は、決定番号の分布が非正則分布になり、確率計算ができないことにある
2)確率変数の独立の定義に、イチャモンつけている
しかし、「確率変数の無限族は,任意の有限部分族が独立のとき,独立, と定義される」という表現は、コンパクト性定理でも使われている表現で、まっとうなものです
(下記 渕野 などご参照)
時枝氏の書いていることは、ちょっと変です
結局、時枝記事の戦略は成り立ちません!
つづく
205: 2020/10/11(日)12:02 ID:85hcVO5n(1/5)調 AAS
>>203
>1.不成立の証明は、反例を一つ提示すれば、終わる
その通り
> 時枝に対し、IID(独立同分布)(>>8-9)が、反例になる
ならない
箱入り無数目の反例とは数当てできない実数列である
反例の意味さえ理解できないバカに数学は無理なので諦めては?
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.028s