[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
473(5): 2021/11/22(月)08:24 ID:o+kXZxaO(4/4)調 AAS
>>464
(引用開始)
>だから、無限公理で、無限長の列を作った
大間違い。
無限公理が存在を謳ってるのは数列ではなく無限集合。
おまえは"…"がすべて同じに見えるようだが、数列表記に現れる"…"と集合表記に現れる"…"はまったく違う。
{0,1,2,…,ω} という集合は存在するが、0,1,2,…,ω という数列は存在しない。
なぜならωが第何項目か定められないから。「自然数を定義域とする関数」との数列の定義に反するから。
不勉強にも程がある。
(引用終り)
なんだ、そこから躓いているのか?
根が深いね、躓きの
それじゃ、数学科行っても 何を勉強したのやら
完全に錯乱しているぞ
{0,1,2,…,ω} は整列集合じゃね?
自然数 N={0,1,2,…}は明らかに、整列集合
だから、ωを一つ追加した {0,1,2,…,ω}も整列集合だ
整列集合だから、定義された順序を使った 0,1,2,…,ω という数列は、存在するよ
下記 wikipediaを、100回音読しろよ
(参考)
https://ja.wikipedia.org/wiki/%E6%95%B4%E5%88%97%E9%9B%86%E5%90%88
整列順序付けられた集合または整列集合(せいれつしゅうごう、英: well-ordered set)とは、整列順序を備えた集合のことをいう。ここで、集合 S 上の整列順序関係 (well-order) とは、S 上の全順序関係 "≦" であって、S の空でない任意の部分集合が必ず ≦ に関する最小元をもつものをいう。あるいは同じことだが、整列順序とは整礎な全順序関係のことである。整列集合 (S, ≦) を慣例に従ってしばしば単純に S で表す。
475: 2021/11/22(月)08:47 ID:+nRRrBLA(6/9)調 AAS
>>473
>整列集合だから、定義された順序を使った 0,1,2,…,ω という数列は、存在するよ
はい、アウト
だから数学科で教育受けたことない「畜生」はダメだっていうんだ
言葉の定義に従えよ 従えない畜生は屠殺なw
数列(sequence)を勝手に整列順序(wellorder)に置き換えるな 🐎🦌
478(1): 2021/11/22(月)12:54 ID:ox6VDuK/(3/6)調 AAS
>>473
> 整列集合だから、定義された順序を使った 0,1,2,…,ω という数列は、存在するよ
アホは口利く前に数列の定義を確認せよ
ちゃんと確認した証として確認した内容をここへ書け
479: 2021/11/22(月)13:00 ID:ox6VDuK/(4/6)調 AAS
>>473
> 下記 wikipediaを、100回音読しろよ
整列集合と数列がどう関係するのか述べよ
480: 2021/11/22(月)13:08 ID:ox6VDuK/(5/6)調 AAS
>>473
整列集合の元だから数列になる?
まったくお話にならない程基礎がズタボロですねあなた。
なんで数学板に常駐してるんです?あなたに数学は無理ですけど。
490(1): 2021/11/22(月)20:14 ID:9YKuQlaS(3/3)調 AAS
>>473
命題「整列集合の任意の元からなる数列が存在する」の反例は実数全体の集合。
仮に任意の実数からなる数列が存在するなら、NからRへの全射が存在することとなるが、これは対角線論法の結果と矛盾。
こんなのは数列の定義を知っていれば一瞬で答えられる初等問題。定義を確認することさえ出来ない3歳児に数学は無理。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.028s