[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
444
(6): 2021/11/21(日)13:44 ID:fskC7CH9(11/17)調 AAS
>>442-443
なんだ、子供が二人か?

(再録)
>名無し超越数 rにおいて、これを空集合φから 具体的に書いて
>「最外カッコ」を付けるとか、殆ど無意味な議論でしょ

ZFC公理系で、集合を構築していくのに、空集合φから出発して、複雑な集合を作る
ここまでは良いよね

簡単な有限集合の場合には、φからの「最外カッコ」の有無が、有効な判定法かもしれない
しかし、複雑な集合ほど、φからの「最外カッコ」の有無という判定法は通用しない
まして、無限集合になれば、φからの「最外カッコ」の有無という判定法は通用しない(πとか超越数の例はそれ>>436
それって、当然じゃね?

その端的な例が、
ノイマン構成で、N(=ω)={0,1,2,・・n・・}で、カッコ{}を外すと、0,1,2,・・n・・と最大値を持たない状態になる>>419
という話で

この最大値を持たない状態を認めるならば
多重シングルトン関数 fsz:n→{{・・{{{}0}1}2・・}n-1}n n∈N+ω>>419

fsz(ω)={・・{{・・{{{}0}1}2・・}n-1}n・・}ω となる

ここに、「最外カッコ」は、{}ωで明白に存在するよ
だから、「最外カッコ」判定ならば、fsz(ω)={・・{{・・{{{}0}1}2・・}n-1}n・・}ωはセーフ>>419

{}ωを外す
・・{{・・{{{}0}1}2・・}n-1}n・・ となる
これは、最大値を持たない状態(個々の要素は有限で列の長さは無限)になるけど、
それはカッコ{}nが全自然数を走るゆえの必然でしょ

この存在を、必死に否定しようとするけど
それ、無理だよ
445: 2021/11/21(日)16:02 ID:+LwTeuHH(9/11)調 AAS
>>444
>なんだ、子供が二人か?
子供は貴様だ SET A

>(自然数に)最大値を持たない状態を認めるならば
「認めるならば」って何だ
SET Aよ 貴様、自然数には最大値があると思うとるんか?w
最大値がないと貴様死ぬんか?w

やれやれ、皇位の女系相続を認めたら
ニセ天皇が誕生して日本が滅ぶとかほざく
竹内久美子みたいなこというんじゃねえよ(嘲)

>多重シングルトン関数 fszで
>fsz(ω)={・・{{・・{{{}0}1}2・・}n-1}n・・}ω となる
>{}ωを外す
>・・{{・・{{{}0}1}2・・}n-1}n・・ となる
>これは、最大値を持たない状態
>(個々の要素は有限で列の長さは無限)
>になるけど、
>それはカッコ{}nが全自然数を走るゆえの必然でしょ
・・{{・・{{{}0}1}2・・}n-1}n・・に「最外カッコ」がないのが必然なら
そいつは集合でもなんでもないな

>この存在を、必死に否定しようとするけど それ、無理だよ
無理なのは貴様だ、SET A 貴様の‥{{}}‥は集合じゃねえ、諦めろ!
452
(2): 2021/11/21(日)21:37 ID:ZtueUz+V(12/15)調 AAS
>>444
>{}ωを外す
>・・{{・・{{{}0}1}2・・}n-1}n・・ となる
>これは、最大値を持たない状態(個々の要素は有限で列の長さは無限)になるけど
じゃあ最外カッコが無いじゃんw

>ここに、「最外カッコ」は、{}ωで明白に存在するよ
それは最内カッコから数えて何番目?
・・{{・・{{{}0}1}2・・}n-1}n・・に最外カッコが無いなら、その外側に追加されたカッコも何番目か答えられんやんw
何番目か答えられんようなカッコは「ある」とは言えない。

一方、集合の元なら何番目か答えられなくてもよい。
何故なら無限公理が最大元が無い集合の存在を認めているから。
例えば集合ω+1の最大元ωは最小元{}から数えて何番目の元かは答えられない。
しかし無限公理と和集合の公理によってω+1の存在は認められる。
三歳児の「ノイマン構成でも同じだ〜」は否定された。
454
(3): 2021/11/21(日)23:23 ID:fskC7CH9(16/17)調 AAS
>>453
>最外カッコの無い集合なんてZFのどの公理も認めてませんが?

いや、だから、最外カッコのあるなしを判定基準にしたら
複雑な構成の集合では、必ずしも有効な判定基準にならんよね

ZFCの集合は、空集合φから組み立てられている
特に無限集合で、空集合φから組み立てられた複雑な集合になれば、その判定基準は機能しないだろう

前にも言ったが、超越数πを空集合φから組み立てて、最外カッコを示してみなよ>>444
出来たら、その判定基準を認めてやる
456
(1): 2021/11/21(日)23:48 ID:ZtueUz+V(15/15)調 AAS
>>454
>いや、だから、最外カッコのあるなしを判定基準にしたら
>複雑な構成の集合では、必ずしも有効な判定基準にならんよね
>特に無限集合で、空集合φから組み立てられた複雑な集合になれば、その判定基準は機能しないだろう
有限集合だろうが無限集合だろうが単純だろうが複雑だろうが一切関係無い。
実際、無限公理が主張する無限集合にもちゃんと最外カッコがある。
逆に最外カッコの無い集合なんてものはどの公理も認めていない。
違うというならどの公理が認めてるのか述べよ。
駄々こねるのが許されるのは三歳児まで。おまえは三歳児か。

>前にも言ったが、超越数πを空集合φから組み立てて、最外カッコを示してみなよ>>444
>出来たら、その判定基準を認めてやる
πを集合表記することと最外カッコの必要性は何の関係も無い。
実際、最外カッコが無くてもよいなどという公理は存在しないが、πを集合表記しようなんて奇特な人間は居ない。集合表記することに何の数学的価値も無いから。
論旨のすり替えはペテン師がやること。おまえはペテン師か。
458
(5): 2021/11/22(月)00:01 ID:o+kXZxaO(1/4)調 AAS
>>455-456
誤魔化そうとしているな

前にも言ったが、超越数πを空集合φから組み立てて、最外カッコを示してみなよ>>444

最外カッコが無いことはないが、具体的に示せない
複雑な無限集合になると、そういう場合があるってわけだ

つまり、自然数N(=ω)={0,1,2,・・n・・}で
カッコ{}を外したら、0,1,2,・・n・・ となる

全てのnは有限だが、列の長さは無限長で、最大値は存在しない
ずーと、無限の彼方に続いている

数学として、そういう無限長の列が必要なんだ
だから、無限公理で、無限長の列を作った

無限長の列を作ったら、”n・・”みたく”・・”と書かざるをえない
それを、良いの悪いのと、とやかくいうことが変だよね
459: 2021/11/22(月)00:35 ID:HIqODhps(1/8)調 AAS
>>454
>前にも言ったが、超越数πを空集合φから組み立てて、最外カッコを示してみなよ>>444
>出来たら、その判定基準を認めてやる
πを集合表記することに数学的価値は無い。
一方、集合表記可能であることを理解すれば、公理的集合論が現代数学を基礎付けしていることを再確認できる。
πの集合表記を見なければ公理的集合論を認めないとする態度こそ幼稚。数学をあきらめて明日から幼稚園に通うべきレベル。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.049s