[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
230(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/10/12(月)23:27 ID:uhfnmhnr(1)調 AAS
サイコロ賭博
・サイコロ一つ、箱一つ、箱の中のサイコロの目は? 確率変数Xで扱えて、的中確率1/6
・サイコロ二つ、箱二つ、箱の中のサイコロの目は? IIDとして、確率変数X1、X2で扱えて、各箱の的中確率1/6
・サイコロn個、n個、箱の中のサイコロの目は? IIDとして、確率変数X1,X2・・・,Xnで扱えて、各箱の的中確率1/6
まさか、箱の中でサイコロがくるくる回り続ける?
笑える
現代数学の確率論では、無限の確率変数が扱えるよ
つまり、箱が無限にあっても、同じだ
突然、無限になると箱の中のサイコロが転がる? 笑えるぜw(^^;
まあ、貴方達には理解できないだろうが
下記東大会田茂樹先生PDFでも、どぞww(^^
https://www.ms.u-tokyo.ac.jp/~aida/index-j.html
会田茂樹
東京大学大学院数理科学研究科
https://www.ms.u-tokyo.ac.jp/~aida/lecture/lecture.html
講義
https://www.ms.u-tokyo.ac.jp/~aida/lecture/30/probability-entropy2018.pdf
確率論とエントロピー 会田 茂樹 2018
P5
可算無限個の確率変数 {Xi}∞i=1 が独立とは, 任意の N に対して, {Xi}Ni=1 が独立であると定義する.
P6
定義 2.8. 確率変数 {Xi}∞i=1 が独立で各 Xi の分布がすべて同じ時, {Xi}∞i=1 は独立同分布に従う
確率変数という. 英語では, independent and identically distributed random variables (略して,i.i.d. random variables) という.
231: 2020/10/12(月)23:49 ID:SPWfhGvZ(2/3)調 AAS
>>230
だーかーらー
時枝解法を否定したいなら時枝解法の確率変数の取り方で勝てないことを示して下さいねー 馬鹿ですかー?
あなたは時枝解法より1京倍下手くそなやり方で勝てないことを示しているに過ぎないんですよー 馬鹿ですかー?
232: 2020/10/12(月)23:55 ID:SPWfhGvZ(3/3)調 AAS
>>230
時枝解法とは似ても似つかぬ解法では勝てない
だから時枝解法でも勝てないはずだ
↑
あなたの論法はこれなんですよ、バカでしょう?
233: 2020/10/13(火)00:06 ID:9WXS8scD(1)調 AAS
>>230
箱の中のサイコロの的中確率1/6というのは当てずっぽうで当てた時の確率なんですよ
何等かのカンニング手段が存在したらもはや1/6なんてことは言えないんですよ、同様に確からしくないでしょ?
時枝解法?ええ、代表からカンニングしてますが?カンニングが失敗する確率は1/100以下ですが?
もうそろそろ理解しましょーねー 何年間間違い続けてるんですかー?
234: 2020/10/13(火)06:09 ID:pRlJwNS7(1/2)調 AAS
>>230
ま〜た、バカがワケワカラン戯言わめいてるね
箱の数をn個とする
箱に実数をいれる
どれか一つ箱を選ぶ
何回やってもいいが、箱の中の数は入れ替えない(ここで分布は無意味となる)
その場合、箱の中の数は、他の数より大きい確率はたかだか1/n
「箱入り無数目」の確率計算は上記と同じ
こんな簡単なことも分からん ◆yH25M02vWFhP は本当にアタマが悪い
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.031s