[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
160
(6): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/30(日)17:28 ID:oR3g+efa(1)調 AAS
>>156
>> 7)時枝も、決定番号は n→∞ の非正則な分布です。なので、まっとうな確率計算ができません
>無限がからむとか、「無作為」(ランダム性)がからむ確率パラドックスは、よく知られている(下記)
>時枝も類似

「時枝も、決定番号は n→∞ の非正則な分布です。なので、まっとうな確率計算ができません」ですが
これ(非正則な分布)が、実は、普通 見えない、見えていないのです
それが、錯覚の原因とパラドックスの原因なのです

例えば、有限の場合、例えばポーカーの「ロイヤルストレートフラッシュ」
この手が来れば、こちらはガンガン強気で攻めることができます。まず負けないと判断できます
繰返すが、これ有限の場合なのです。つまり、手の強さに上限があるから、上限の強い手が来れば、「負けない」と判断できます

ところが、手の強さに上限がない、つまり無制限だとすれば? 自分が、どんなに強い手を得ても、それが有限なら、必敗です
なぜなら、相手は無限の強さですから

これと同じことが、時枝の決定番号に言えます
決定番号で有限のd1を得た
これを、未知の無限大の可能性のあるd2との大小比較(=勝ち負け、つまり、d2>d1なら負け)を考えると
d2は、∞まで可能性があるので、どんなに大きなd1を得ても、必敗予想になるべきです

これが、時枝のトリックの分り易い説明です

(参考)
https://ja.wikipedia.org/wiki/%E3%83%9D%E3%83%BC%E3%82%AB%E3%83%BC%E3%83%BB%E3%83%8F%E3%83%B3%E3%83%89%E3%81%AE%E4%B8%80%E8%A6%A7
ポーカー・ハンドの一覧
A◆ K◆ Q◆ J◆ 10◆ のようなAから10までのストレートフラッシュのことを、「ロイヤルフラッシュ」とも呼ぶ。この役は、一般的なルールにおいて最も強い役である。日本では「ロイヤルストレートフラッシュ」と呼ぶことがある。
161: 2020/09/06(日)00:23 ID:JRBNrvaF(1/2)調 AAS
>>160
>時枝も、決定番号は n→∞ の非正則な分布です。
いいえ、正則です。
100個の決定番号は「私」のターンにおいて固定される、つまり「あなた」のターンにおいてはN^100空間の一点のみ確率1、他のすべての点は確率0ですから。
162: 2020/09/06(日)00:34 ID:JRBNrvaF(2/2)調 AAS
>>160
>これを、未知の無限大の可能性のあるd2との大小比較(=勝ち負け、つまり、d2>d1なら負け)を考えると
>d2は、∞まで可能性があるので、どんなに大きなd1を得ても、必敗予想になるべきです
大小比較を行う100個の決定番号は「私」のターンにおいて決定済みなので「∞まで可能性がある」は誤解ですねー
163: 2020/09/07(月)03:01 ID:uKa1rOlY(1)調 AAS
>>160
>決定番号で有限のd1を得た
>これを、未知の無限大の可能性のあるd2との大小比較(=勝ち負け、つまり、d2>d1なら負け)を考えると
>d2は、∞まで可能性があるので、どんなに大きなd1を得ても、必敗予想になるべきです
あなたが言ってるのは
「Nのいずれか1元を無作為に選んだ時、ある自然数より小さい確率」
ですね。これ、箱入り無数目の確率(以下に引用)とはまったく別モノですね。
「さて, 1〜100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」

その前にそもそも「Nのいずれか1元を無作為に選ぶ方法」が示されてません。Nは無限集合ですから有限集合のようなわけには行きませんよ?
169
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/09/12(土)17:41 ID:cnqeiEp4(1)調 AAS
>>160 補足

時枝(>>7)が成立しないことは、大学教程の確率論・確率過程論を、学んだ人にはすぐ分かる
呪文は、IID(独立同分布)(>>8-9)!

1.独立だから、問題の箱以外を開けても、問題の箱とは無関係
2.同分布だから、どの箱も、別の確率になることはない

さらに、おかしなこと
1.箱の数として、ある確率現象を考える。コイントスの0,1なら確率1/2
 サイコロで1〜6の数なら確率1/6
 閉区間[0,1]の一様分布の実数1点的中は、確率0(∵零集合だから)
2.ところが、時枝さんの方法では、確率現象の依存性が消えてしまっている
 どんな確率現象でも、一律99%。これはおかしい

なぜ、こんなおかしな事が?
それは、思わず知らず 非正則な分布の上で、確率計算をしてしまっているから(>>160)です(^^
195
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/09/22(火)12:14 ID:qkl/9znF(2/2)調 AAS
>>188 再録
(引用開始)
1.不成立の証明は、反例を一つ提示すれば、終わる
 時枝に対し、IID(独立同分布)(>>8-9)が、反例になる
 それで、証明は終わっている
 ・独立だから、他の箱を開けてもだめ
 ・同分布だから、サイコロを使えば、確率1/6にしかならない。99/100にはならない
(引用終り)

>>169より)
時枝(>>7)が成立しないことは、大学教程の確率論・確率過程論を、学んだ人にはすぐ分かる
呪文は、IID(独立同分布)(>>8-9)!

1.独立だから、問題の箱以外を開けても、問題の箱とは無関係
2.同分布だから、どの箱も、別の確率になることはない

さらに、おかしなこと
1.箱の数として、ある確率現象を考える。コイントスの0,1なら確率1/2
 サイコロで1〜6の数なら確率1/6
 閉区間[0,1]の一様分布の実数1点的中は、確率0(∵零集合だから)
2.ところが、時枝さんの方法では、確率現象の依存性が消えてしまっている
 どんな確率現象でも、一律99%。これはおかしい

なぜ、こんなおかしな事が?
それは、思わず知らず 非正則な分布の上で、確率計算をしてしまっているから(>>160)です(^^
203
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/10/01(木)15:15 ID:7fZLD5Mp(1/2)調 AAS
再録
(引用開始)
1.不成立の証明は、反例を一つ提示すれば、終わる
 時枝に対し、IID(独立同分布)(>>8-9)が、反例になる
 それで、証明は終わっている
 ・独立だから、他の箱を開けてもだめ
 ・同分布だから、サイコロを使えば、確率1/6にしかならない。99/100にはならない
(引用終り)

>>169より)
時枝(>>7)が成立しないことは、大学教程の確率論・確率過程論を、学んだ人にはすぐ分かる
呪文は、IID(独立同分布)(>>8-9)!

1.独立だから、問題の箱以外を開けても、問題の箱とは無関係
2.同分布だから、どの箱も、別の確率になることはない

さらに、おかしなこと
1.箱の数として、ある確率現象を考える。コイントスの0,1なら確率1/2
 サイコロで1〜6の数なら確率1/6
 閉区間[0,1]の一様分布の実数1点的中は、確率0(∵零集合だから)
2.ところが、時枝さんの方法では、確率現象の依存性が消えてしまっている
 どんな確率現象でも、一律99%。これはおかしい

なぜ、こんなおかしな事が?
それは、思わず知らず 非正則な分布の上で、確率計算をしてしまっているから(>>160)です(^^
(積分範囲が、∞になる場合は、裾が1/xつまり、指数でいえば-1乗よりも早く減衰しないと、積分値は発散します。下記 裾の重い分布などご参照)

なお、(>>183より再録)時枝の記事の後半で、おかしなことが書いてある
 1)数列のシッポだから、ビタリ風の非可測集合と即断しているが、そもそも可算無限次元のR^∞には、計量が入らない(自乗総和が無限大に発散する)
  計量を入れるなら、ヒルベルト空間などに制限する必要があるが、そこの問題ではない
  時枝戦略の本質的問題点は、決定番号の分布が非正則分布になり、確率計算ができないことにある
 2)確率変数の独立の定義に、イチャモンつけている
  しかし、「確率変数の無限族は,任意の有限部分族が独立のとき,独立, と定義される」という表現は、コンパクト性定理でも使われている表現で、まっとうなものです
  (下記 渕野 などご参照)
  時枝氏の書いていることは、ちょっと変です

結局、時枝記事の戦略は成り立ちません!

つづく
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.038s