[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
130
(3): 2020/08/07(金)15:56 ID:kwZAOrGY(1)調 AAS
>>111補足

1)下記、非正則な分布は、積分値が無限大に発散してしまい、全事象の確率は1であるというコルモゴロフの確率の公理に反しています
 ですので、まっとうな確率計算はできません
2)例えば、1〜100まで100枚のカード各1枚あるとします。典型的な一様分布です。
 番号を点数として、1点〜100点とします。
3)カードをよくシャッフルして伏せて、カードを1枚とる。二人の対戦ゲームとします。点数が上なら勝ち
 もし、自分が90点代、例えば、91点だとします。上位1割の点数ですから、勝つ確率9割です
4)でも、1〜1000まで1000枚のカード各1枚なら? 91点なんて低い点数では、勝てる確率1割以下です
5)1〜nまでn枚のカード各1枚なら、上位1割 つまり (9/10)n以上の点数で、勝てる確率1割以下です
6)では、n→∞ の非正則な分布ではどうか?
 非正則な分布は、積分値が無限大に発散してしまい、全事象の確率は1であるというコルモゴロフの確率の公理に反しています
 ですので、まっとうな確率計算はできません
 1億点でも、1兆点でも、有限の点数では、∞に比べて微小であり、まっとうな確率計算ができません。あえて、するなら確率0(ゼロ)です
7)時枝も、決定番号は n→∞ の非正則な分布です。なので、まっとうな確率計算ができません

QED(^^

>>67より)
https://ai-trend.jp/basic-study/bayes/improper_prior/
AVILEN Inc 2020/04/14
非正則事前分布とは?〜完全なる無情報事前分布〜
(抜粋)
非正則分布は確率分布ではない!?
非正則な分布とは、一様分布の範囲を無限に広げた分布のことです。(注:正確には、”ようなもの”で、これに限りません)
積分値が無限大に発散してしまいます。これは、全事象の確率は1であるというコルモゴロフの確率の公理に反しています。
(引用終り)
以上
132: 2020/08/07(金)19:59 ID:B3bne7H4(1)調 AAS
>>130
> まっとうな確率計算はできません

通常のサイコロの確率も正しくない(まっとうな確率計算はできない)
という結論が導かれる素晴らしい考察です
140
(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/09(日)08:24 ID:QmjvhqAQ(2/7)調 AAS
>>139 補足

さて、時枝をもう少し具体例に落として、考えてみよう
(>>7 時枝記事(数学セミナー201511月号の記事)ご参照)

(>>37の)フレシェフィルターによる、時枝の可算無限数列のシッポの同値類
(これだけでは何も新しいことは言えないが、考察の手がかりには なる)

1)簡単に2つの可算無限数列x,yで考えよう
 いま、具体例として、無理数の無限小数展開の小数部分を考える
 10進で、各桁は0〜9の数で、この可算無限数列が得られる
 (例えば、π=3.14159 26535 89793・・で、小数点以下の”14159 26535 89793・・”を考えるってこと)
2)フレシェフィルターは、これだけでは何も言えないが、超準解析(ノンスタとも)と繋がっているところが良いね
 ”14159 26535 89793・・”の時枝の同値類を考える
 例えば、先頭の有限部分を変えた ”x1,x2,x3,x4, 9 26535 89793・・”などは、その例だ(x1,x2,x3,x4・・・などは任意の実数で可)
 これらで、数列xとその同値類を考える
3)さて、時枝さんのやっていることは、別の数列yから、ある有限の決定番号dyを得て
 問題の数列xの決定番号dxとの比較で、dx < dy となっていれば、勝ち
 つまり、数列xにおいて、dy+1番目より大きいシッポの数を知って、数列xの代表からdy番目の数列xの数が的中できるという
4)ところが、>>130で書いたように、決定番号はその分布が非正則。つまり、コルモゴロフの確率の公理を満たすことができない
 だから、P(dx < dy)=1/2 (つまり確率1/2) という計算が正当化されない
5)フレシェフィルターに戻ると、x1,x2,x3,x4・・・などは、上記のように別に 10進の 0〜9 に限らない。任意の実数で良いのだ
 とすると、代表のdy番目の数は、「0〜9 に限らない 任意の実数」となっている可能性が大
 そういうことを、確率計算に折り込む必要があるが、それも難しい(不可能でしょ)
6)ここらを批判しているのが、mathoverflowでの二人の数学Dr Alexander Pruss 氏と Tony Huynh氏です!(>>92 ご参照)
以上

つづく
151
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/09(日)20:01 ID:QmjvhqAQ(6/7)調 AAS
>>130 補足
> 7)時枝も、決定番号は n→∞ の非正則な分布です。なので、まっとうな確率計算ができません

決定番号は、明らかに上限はなく、自然数全体を渡る。つまり n→∞
このような場合、確率分布は、広義積分(又は和)になります(下記ご参照)

n→∞ まで、積分する(あるいは和を取る)とき
n→∞ で、十分早く減衰する必要があります。単なる減衰ではなく、1/xよりも早く減衰しなければ発散します
(x^k で言えば、べきk が、-1よりも早く減衰しなければ、積分値は発散します。nで言えば、1/nより早く減衰する必要があるってことです)

つまり、時枝の決定番号は、n→∞ で 積分(又は和)が発散し、非正則分布になり、まっとうな確率計算はできません

確率分布を勉強すれば、これは初歩の初歩で、常識です(^^
発散する場合、分布は非正則分布であり、まともな確率計算はできません

(参考)
https://ameblo.jp/2217018/entry-12318900072.html
プロフィール|ピグの部屋 ペタ
広義積分∫x^^kdxの収束・発散 2017-10-12
(抜粋)
J(k)=∫[1?∞]x^k dx
とする。

収束・発散

J(k)はk<-1のときに収束し、その極限値は1/|k+1|である。
それ以外のときは、+∞に発散する。

https://ja.wikipedia.org/wiki/%E5%BA%83%E7%BE%A9%E7%A9%8D%E5%88%86
広義積分
(抜粋)
広義積分(こうぎせきぶん、英: improper integral)とは何らかの定積分の積分区間を動かしたときの極限である。極限値は有限確定値に収束することもあるが発散することもある。積分区間の端点(片方または両方)は何らかの実数か正または負の無限大に近づく。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.029s