[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
10
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/07/18(土)10:22 ID:ywyns0bH(9/11)調 AAS
>>9
前スレより
2chスレ:math
補足

<時枝戦略が一見正しいように見える仕掛け>
・時枝戦略が不成立など、高校生でも直観で分かる
・IID 独立同分布なのに、あるm番目の箱のみ的中確率99%などなりようがない
・IID 独立同分布なのに、あるm番目の箱の数を、m番目以外の他の箱を開けて、推測が出来たり、推測の手がかりが得られることはない
・そんなことは、高校生でも分かることだが、ではなぜ当たるように見えるのか? そのトリックは?
・おそらく、可算無限個の箱にトリックがある
 1.いま、(例えば100列の)箱の長さがn(個)とする
 2.決定番号d (範囲は1<=d<=n) として、dが 範囲 1〜j (j<n) にある確率は、p=j/n である
 3.さて、j はある有限の自然数とし、かつ、簡単に分母nは自然数N全体で一様分布とすると、 時枝記事に合わせて n→∞ を考えて、lim n→∞ p (j/n) =0
 4.つまり、決定番号dがある有限j 以下である確率は0(その事象が生じないわけではない)
  確率は0だが、その事象が生じないわけではない。が、「確率0」だということがなかなか見えない
 5.そして、簡単な計算で分かることだが、分母nは自然数N全体を渡るが、一様分布ではなくボトムヘビーの分布になる
 6.だから、一見当たるように見えるだけで、実は当たらない(「確率0」が効いている)

 (なお、当たらないことの数学的証明は、すでに述べたように、もっと簡単に反例の存在により、すでに示しめしている(>>896など))

(参考)
https://ja.wikipedia.org/wiki/%E6%9D%A1%E4%BB%B6%E4%BB%98%E3%81%8D%E7%A2%BA%E7%8E%87
条件付き確率
(抜粋)
B の測度が 0 の場合が問題である。

この方法はボレル-コルモゴロフのパラドックス(英語版)が生じる。
(引用終り)
以上
16: 2020/07/18(土)14:08 ID:34X7G75E(6/8)調 AAS
>>10
>・時枝戦略が不成立など、高校生でも直観で分かる
時枝記事は直観に反するから雑誌記事になり得るのです。
実際、大学数学の知識の無い瀬田は見事にひっかかってますよね?
18: 2020/07/18(土)17:57 ID:MUPMdT1w(1/3)調 AAS
84スレ
2chスレ:math
に、ここの>>7-10を抜粋引用の上、徹底的に反駁してやったので読めw
28
(7): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/07/26(日)10:17 ID:uQ4z/5zX(1/4)調 AAS
>>10
補足

時枝記事の類似は、2013年12月09日にmathoverflowで、議論されている
二人の数学Dr Alexander Pruss 氏と Tony Huynh氏と、それ以外に質問者Denis氏(彼はコンピュータサインスの人)の周囲の人("other people argue it's not ok")
たちは、「時枝の議論は測度論的に不成立」と言っている

(参考)
https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice
Probabilities in a riddle involving axiom of choice Denis氏 Dec 9 '13
(抜粋)
・・・but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.

answered Dec 11 '13 at 21:07 Math Dr. Alexander Pruss 氏
・・・But we have no reason to think the event of guessing correctly is measurable with respect to the probability measure induced by the random choice of sequence and index i
・・・Intuitively this seems a really dumb strategy.

answered Dec 9 '13 at 17:37 Math Dr. Tony Huynh氏
・・・If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist.
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.032s