[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
404: 2021/11/20(土)10:31 ID:wjyKxUal(1/4)調 AAS
Neumannの順序数で「自分より小さい全ての順序数の集合」とするところを
Zermeloの順序数で「自分より小さい順序数の最大元」としている
(シングルトンという見た目だけにこだわるのは幼稚な三歳児だけ)

「自分より小さい順序数の最大元」が存在しない場合には
それに代わる方法をとるしかない 要は、
「自分より小さい順序数の集合で、
 自分より小さいいかなる順序数xも、
 その中に必ずある要素y(x)が存在し
 y(x)>xとなるようにできるもの」
であればいい

注)y(x)と書いたのは、
  xに依存せず決まる定数ではなく
  xに依存して決まる関数であるから
406
(1): 2021/11/20(土)12:02 ID:wjyKxUal(2/4)調 AAS
>>405
>ノイマン構成で、N=ωが出来たあかつきには、
>後者関数を使わない方法をとればいい
 それは構わない
 しかし、その方法は中卒君の「お絵描き法」ではない

>”}n”などと添字つきのカッコを考える
 下手な考え、休むに似たり

>fsz(n)={{・・{{{}0}1}2・・}n-1}n
>fsz(ω)={・・{{・・{{{}0}1}2・・}n-1}n・・}ω
 その定義で
 fsz(n) < fsz(ω)
 はどうやって証明するつもりだい?

 ω={0,1,2,…}なら 任意の自然数nについて
 n∈ωだから、n<ωだよ
 でも君の定義では証明できないね

 ここで困らない中卒君は 考えてないってこと
 考えないヤツは数学する意味がないよ
408
(2): 2021/11/20(土)16:27 ID:wjyKxUal(3/4)調 AAS
>>407
>> fsz(n) < fsz(ω)
>> はどうやって証明するつもりだい?
>そこから、分かってないのか
分かってないのは、中卒、貴様だよ、キ・サ・マ

>数学では、順序とは定義するものだよ
>新しい要素 fsz(ω)を、導入したのです
>ならば、fsz(ω)の順序を、他と矛盾なく、
>キチンと定義すれば良い
じゃ、即しろよ 🐎🦌

>定義:∀n∈N fsz(n) < fsz(ω) とすれば良い
>それで、well-definedです
早速質問

<と∈の関係は?
例えばfsw(ω)={・・{{・・{{{}0}1}2・・}n-1}n・・}ω の要素
・・{{・・{{{}0}1}2・・}n-1}n・・ は ωより小さい? どのnよりも大きい?
もし両方ともYesなら、
「ωは0,1,2,…より大きい最小の順序数」
という定義に真っ向から反するね

だって、任意のnについて
n<・・{{・・{{{}0}1}2・・}n-1}n・・<ω
だろ?

well-defined? 
ill-definedじゃん

さすが「0.999…<1」(ドヤ顔)と断言しちゃう中卒DQNだね
409
(1): 2021/11/20(土)16:37 ID:wjyKxUal(4/4)調 AAS
だいたい、カッコに番号をつけるって発想が幼稚
0=0
1=0,1
2=0,1,2
・・・
ω=0,1,2,…ω

って考えるのはアサハカな🐎🦌

Neumann構成で、なんで自分より小さい順序数の集合としてるか考えろよ

0=(空)
1=0
2=0,1
・・・
ω=0,1,2,・・・

要は
ω=0,1,2,…ω
としちゃうと、右辺からωを抜いた
0,1,2,… は何なんだってことになっちゃう
そこに気づかないってのは考えなしの
バカ・アホ・タワケなんだなあw
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.032s