[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
254: 2021/08/22(日)07:32 ID:QZFJZsWw(1/6)調 AAS
>>250
Q1: 分出公理は恐らく空集合の場合でも集合自体は存在するという考えですか?
A1: ええ、空集合は集合です 空集合の公理、御存知ですか?

Q2: 分出公理によって存在が保証された集合は、空集合でない事も保証されますか?
A2: 分出公理だけではそれは保証できませんし、保証する必要もありません 空集合も集合ですから

Q3: しかしBが空集合の場合、Bの全要素は写像f(x)に含まれると言えませんか?
A3: 「f(x)に含まれる」とは「f(x)の要素である」という意味で用いていると思われるので、その上で答えるなら、もちろん言えます

ただ、あなたはBの定義を誤解されていると思われます

あなたが理解したBの定義を、あなたのことばで書き切ってくだされば
即座に誤りを指摘してみせますが、如何ですか?
255: 2021/08/22(日)07:42 ID:QZFJZsWw(2/6)調 AAS
もしBが空集合だったとします

その場合、BはAの部分集合であるにも関わらず
Aのどの要素xの像f(x)でもないことになります

Bの定義から、Aのどの要素xについてもf(x)はみなxを要素とするので
空集合ではないからです
258: 2021/08/22(日)07:52 ID:QZFJZsWw(3/6)調 AAS
もしBが空集合ではなかったとします

その場合x∉f(x)でないAの要素xが存在します つまりBはx∈Bのf(x)ではありません
そして、Bは上記のx以外のAのいかなる要素yについての像f(y)ではありません
なぜならその場合y∈f(y)(=B)の要素となってしまいますが、
その場合、Bの定義からy∉Bだからです
259: 2021/08/22(日)08:01 ID:QZFJZsWw(4/6)調 AAS
>>256
>Bの全要素は、f(x)に含まれません。

それがあなたの理解した定義なら誤ってます
正しい定義は
「Bは、x∉f(x)となるAの要素x全てからなる集合です」

Bが空集合であれば、Bのいかなる要素もf(x)の要素です
ただしx∈f(x)となるような要素は存在しません
261
(1): 2021/08/22(日)08:15 ID:QZFJZsWw(5/6)調 AAS
>>260
Bが空集合でも、空集合自体がfの像でないと示せるから、主張は証明されるけど?
264: 2021/08/22(日)09:51 ID:QZFJZsWw(6/6)調 AAS
>>262
 ∀x(x∈A⇒x∈B)
⇔∀x(x∉A∨x∈B)
⇔∀x¬(x∈A∧x∉B)

つまり、∀x(x∉A)、すなわちAが空集合なら
∀x(x∈A⇒x∈B)は自動的に成り立つ

一方
∀x(x∈A⇒x∈B)から
∃x(x∈A∧x∈B)はいえない

∃x(x∈A)、すなわちAが空集合でない
という条件が必要だから
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.038s