[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
24(2): 2020/07/19(日)07:11:32.91 ID:v7bzJjCy(1/2)調 AAS
>>24
ん?次スレ(雑談84スレ)立ってるじゃん
有難く使えよ
42(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/07/27(月)21:41:57.91 ID:slbIBvLt(1/6)調 AAS
>>39 補足
https://arxiv.org/pdf/1212.5740.pdf
Filters and Ultrafilters in Real Analysis 2012
Max Garcia Mathematics Department California Polytechnic State University
Abstract
We study free filters and their maximal extensions on the set of natural numbers.
We characterize the limit of a sequence of real numbers in terms of the Fr´echet filter, which involves only one quantifier as opposed to the three non-commuting quantifiers in the usual definition.
We construct the field of real non-standard numbers and study their properties.
We characterize the limit of a sequence of real numbers in terms of non-standard numbers which only requires a single quantifier as well.
We are trying to make the point that the involvement of filters and/or non-standard numbers leads to a reduction in the number of quantifiers and hence, simplification, compared to the more traditional ε, δ-definition of limits in real analysis.
Contents
Introduction . . 1
1 Filters, Free Filters and Ultrafilters 3
1.1 Filters and Ultrafilters . . .. 3
1.2 Existence of Free Ultrafilters . . . . . . 5
1.3 Characterization of the Ultrafilter . . . . . . 6
2 The Fr´echet Filter in Real Analysis 8
2.1 Fr´echet Filter . . . . . . . . . 8
2.2 Reduction in the Number of Quantifiers . . .. . . 10
2.3 Fr´echet filter in Real Analysis . . . . . . . 11
2.4 Remarks Regarding the Fr´echet Filter . . . . . 12
3 Non-standard Analysis 14
3.1 Construction of the Hyperreals *R . . . . . 14
3.2 Finite, Infinitesimal, and Infinitely Large Numbers . . . . . . . 16
3.3 Extending Sets and Functions in *R . . . . . . . . . . . . . . . 20
3.4 Non-Standard Characterization of Limits in R . . . . . . . . . 23
A The Free Ultrafilter as an Additive Measure 25
89: 2020/08/01(土)23:41:57.91 ID:zi34a+DT(4/4)調 AAS
>>86
>M→∞という非正則な分布で確率を考えることは、ダメってことです
だから?箱入り無数目と全く関係無いですけど?
>時枝の決定番号に同じです。(X,Y二人のカード、x,y という数は存在するが、その確率計算は、非正則な分布を使うので、正当化されない!)
いいえ、出題者が数列を定めた時点で100列も、100列の決定番号も定まります。確率変動しないので分布を考えること自体無意味です。
実際箱入り無数目には
「そして箱をみな閉じる.今度はあなたの番である.」
と記されており、回答者の番になった後に箱の中の数が変わることは有りません。
箱入り無数目の確率事象は100列から1列選ぶところです。
実際箱入り無数目には
「さて, 1〜100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」
と記されており、ここ以外に確率事象の記載はありません。違うと言うなら記載箇所を具体的に提示して下さいねー
箱入り無数目の確率事象がまったく読み取れていないのでゼロ点ですねー 落第でーす
298: 2021/11/09(火)02:11:44.91 ID:lDQuO+st(1)調 AAS
エンドレスムーヴィングゴールポスト論法
359(1): 2021/11/16(火)19:01:36.91 ID:gRzlGBz8(1)調 AAS
>>352
>0,1,2・・・ なる列は、集合の列ではない?
>一番右がないので、”・・・”は集合列ではなくなる?
中卒君は誰も言ってないことが幻聴で聞こえるらしい
💊飲め
>345
>ω重なら、{・・・,{,{},},・・・}
>ω重から、・・・,{,{ },},・・・ なるものができる
>それは、ノイマン構成でも同じこと
同じじゃないけど
>ノイマン構成 N(=ω)={0,1,2,・・・}で
だろ?
だからノイマン構成なら
{…{{}}…}ではなく
{{},{{}},{{{}}},…}だけど
>{}を外すと、0,1,2,・・・ なる列ができるが、
>これはエンドレス無限(可能無限)
ああ、そうだよ
誰もそのことに文句はつけてないけど
君には文句が聴こえるのか?それ幻聴な
💊飲め
446(5): 2021/11/21(日)17:37:43.91 ID:fskC7CH9(12/17)調 AAS
>>401&>>405(添字付与)より再録と補足
多重シングルトン関数 fsz:n→{{・・{{{}0}1}2・・}n-1}n n∈N+ω とする(N:自然数の集合)
対応は
数→ Zermelo → Neumann
0 : {}0 → {}
1 : {{}0}1 → {0}
2 : {{{}0}1}2 → {0, 1}
3 :{{{{}0}1}2}3 → {0, 1, 2}
・
・
n :{・・{{{}0}1}2・・} → {0, 1, 2,・・,n-1}
・
・
ω :{・・・{{{}0}1}2・・・}ω → {0, 1, 2,・・,n-1・・・} (注:・・・の部分は全ての自然数を尽くす)
ここで
n :{・・{{{}0}1}2・・} → {0, 1, 2,・・,n-1}
・
・
の部分は、無限集合たる自然数Nのもつ性質そのものだ
つまり、∀n∈N でnは有限だが、列・・の部分は無限長
それは、数、Zermelo とNeumannの3者とも共通だ
で最後の
ω :{・・・{{{}0}1}2・・・}ω → {0, 1, 2,・・,n-1・・・} (注:・・・の部分は全ての自然数を尽くす)
で、”・・・”の部分も、無限集合たる自然数Nのもつ性質そのもの
これが良いとか悪いとか
全くおかしな議論です
そもそもが、無限公理まで導入して、無限集合たる自然数Nを作ったのは
全ての自然数を尽くす列 0, 1, 2,・・,n-1・・・ を作るためだったはず
(それが出来れば、整数環Z→有理数体Q→(Qのコーシー列から)実数体R が構築できるのです)
”・・・” の部分が出来たら、
それが良いとか悪いとか
全くおかしな議論です
515: 2021/12/05(日)00:45:25.91 ID:MqQ62sSb(2/3)調 AAS
>>509
そんな奴だからSetAは無限重シングルトン解釈トンデモ妄想。
有限と無限の分別も付けないSetAは自らの似非帰納法が
「1は有限値
2は有限値
3は有限値
…
だから
∞も有限値!」
と言ってるのと同じである事に気付いてない。
そんな奴だから0.999…を有限小数として扱うわけ(SetA前歴実話)だ。
531: 2021/12/08(水)15:49:46.91 ID:umaeoeyg(1)調 AAS
>>529
どこにも「有限で成り立つことは無限でも成り立つ」なんて書かれてないけど
日本語も読めない落ちこぼれ?
537: 2021/12/30(木)09:03:33.91 AAS
300132人目の素数さん 2021/12/16(木) 11:16:02.46 ID:rOPOlAUb
2chスレ:math
誤り1
>さてノイマン構成で、ωn={0,1,…}が出来たとき、
>0,1…の中に、無限のネスト深さの元が存在します
正解1
ノイマン構成で、ωn={0,1,…}が出来たとき、
0,1,…は全て、有限のネスト深さの元です
(つまり、無限のネスト深さの元は存在しません)
誤り2
>(証明:背理法による。
> 有限のネスト深さの元しかなければ、ωnは有限集合であるから、
> ωnが無限集合であることに矛盾する)
正解2
有限のネスト深さの元は無限にあるので、ωnは無限集合です
つまり、矛盾しません
誤り3
>同様に、ペアノ公理で、
>ツェルメロの後者関数 suc(a) := {a} を使って、
>無限集合たる自然数を構成すると、
>その中に無限のネスト深さの元が存在します.
>つまり、ペアノ公理を認めるならば、
>同様に無限集合たる自然数を構成できて、
>その中に無限のネスト深さの元が存在する
正解3
ペアノ公理を使って自然数の全体という
無限集合が構成できますが、
その中に「無限自然数」は存在しません
したがって
>ネスト深さnの極限として、aωが構成でき
> lim n→ω an
>=aω=ω{・・n{n-1{・・1{0{}01}1・・}n-1}n・・}ω
>=ω{・・n{n-1{・・1{Φ}1・・}n-1}n・・}ω
>です。
は誤りであり嘘であり妄想です
ここまでよくないなら、残念ながら数学は無理ですね
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.044s