[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
32: 2020/07/26(日)20:41:54.77 ID:9ZaudBKU(1/5)調 AAS
>>30
>4)このような p=1/100の計算は、”有限n枚発行”の条件下では、正当化できる
「さて, 1〜100 のいずれかをランダムに選ぶ.」から分かる通りn=100ですけど?
> しかし、無限大を考えてn→∞ とすると、p=1/100の計算は、必ずしも正当化できない
何の話してんの?
74(1): 2020/07/31(金)16:58:07.77 ID:rnzodbOa(3/8)調 AAS
>>65
数学の道を諦めて哲学の教授になられたPrussさんも確率99/100以上が正しいことを認めてますよー
「For each fixed opponent strategy, if i is chosen uniformly independently of that strategy (where the "independently" here
isn't in the probabilistic sense), we win with probability at least (n-1)/n. That's right.
Alexander Pruss Dec 19 '13 at 15:05」
>answered Dec 11 '13 at 21:07 Math Dr. Alexander Pruss 氏
より後の日付なので、間違いに気付かれたようですねー
101(1): 2020/08/02(日)21:14:26.77 ID:Gy6y7tWX(5/5)調 AAS
>>99
2chスレ:math
>さて, 1〜100 のいずれかをランダムに選ぶ.
>例えばkが選ばれたとせよ.
>s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない.
(中略)
>s^1〜s^(k-l),s^(k+l)〜s^100の決定番号のうちの最大値Dを書き下す.
(中略)
>いま
> D >= d(s^k)
>を仮定しよう.
>この仮定が正しい確率は99/100,
>そして仮定が正しいばあい,
>上の注意
>「あるD>=d についてsD+1, sD+2,sD+3,・・・
> が知らされたとするならば,それだけの情報で既に r = r(s)は取り出せ,
> したがってd= d(s)も決まり,結局sd (実はsd,sd+1,・・・,sD ごっそり)が決められる」
>によってs^k(d)が決められるのであった.
あくまで
d(s_k)とD(s^k)(=k以外の列の決定番号の最大値)
に対して、条件
D(s^k)>=d(s_k)
を満たさない列はたかだか1つ、であるから
上記の条件が成り立つ列を選ぶ確率が99/100
としか読めないが
(それ以外の読み方は確実に誤りだと断言できる)
172: 2020/09/15(火)21:40:54.77 ID:9Bwg1zHi(2/3)調 AAS
ですよね
不成立の証明を課題に与えても手も足もでないようですし
236: 2020/10/14(水)00:50:22.77 ID:xJ23NIg5(1)調 AAS
瀬田くんへ忠告
サイコロ=確率1/6と馬鹿の一つ覚えじゃなく、同様に確からしい(一様分布)という条件が崩れたら確率も変わる
という当たり前過ぎるほど当たり前のことにちゃんと気付こうね
259: 2021/08/22(日)08:01:49.77 ID:QZFJZsWw(4/6)調 AAS
>>256
>Bの全要素は、f(x)に含まれません。
それがあなたの理解した定義なら誤ってます
正しい定義は
「Bは、x∉f(x)となるAの要素x全てからなる集合です」
Bが空集合であれば、Bのいかなる要素もf(x)の要素です
ただしx∈f(x)となるような要素は存在しません
292(2): 2021/11/08(月)07:04:20.77 ID:CF7SYpmS(1/3)調 AAS
>>291
> ≪ωとか違う記号をつかうのが「皆様ルール」)
おサルのボクちゃん、面白いことを考えたねw (参考) 2chスレ:math
それは、あんたの独自説ですよ
”≪”の一般的な説明は下記だよね
で、”「極度に大きい」に絶対普遍な基準はなく、文脈に応じて臨機応変に解釈される”とあるでしょ?
人の常識無いな、サルは
「≪ω」を使っている人居ないでしょ?
居るなら、挙げてみて
そんなん、わざわざ、「≪ω」とかアホや。サル知恵も良いところだなw
https://ja.wikipedia.org/wiki/%E4%B8%8D%E7%AD%89%E5%8F%B7
不等号
3.2 非常に大きい/小さい
比が極度に大きいことを示すために、通常の不等号ではなく、「≪」「≫」が使用される。原則として、双方非負(0以上)の場合にのみ使う。0に近い領域で比が大きいこともあるので、差は必ずしも大きくない。
その後に近似計算を行うための説明であることが多い。
「〜は〜より十分に小さい(大きい)」「〜は〜より非常に小さい(大きい)」などと読む。
ここでの「極度に大きい」に絶対普遍な基準はなく、文脈に応じて臨機応変に解釈される。
使用例
・ 10^-10 ≪ 0.1 < 1 < 10≪10^10
・ a ≫ 1 ならば a+1 ≒ a
408(2): 2021/11/20(土)16:27:36.77 ID:wjyKxUal(3/4)調 AAS
>>407
>> fsz(n) < fsz(ω)
>> はどうやって証明するつもりだい?
>そこから、分かってないのか
分かってないのは、中卒、貴様だよ、キ・サ・マ
>数学では、順序とは定義するものだよ
>新しい要素 fsz(ω)を、導入したのです
>ならば、fsz(ω)の順序を、他と矛盾なく、
>キチンと定義すれば良い
じゃ、即しろよ 🐎🦌
>定義:∀n∈N fsz(n) < fsz(ω) とすれば良い
>それで、well-definedです
早速質問
<と∈の関係は?
例えばfsw(ω)={・・{{・・{{{}0}1}2・・}n-1}n・・}ω の要素
・・{{・・{{{}0}1}2・・}n-1}n・・ は ωより小さい? どのnよりも大きい?
もし両方ともYesなら、
「ωは0,1,2,…より大きい最小の順序数」
という定義に真っ向から反するね
だって、任意のnについて
n<・・{{・・{{{}0}1}2・・}n-1}n・・<ω
だろ?
well-defined?
ill-definedじゃん
さすが「0.999…<1」(ドヤ顔)と断言しちゃう中卒DQNだね
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.028s