[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
67
(7): 2020/07/31(金)11:40:59.68 ID:Trt2z5f1(3/7)調 AAS
>>65 補足

確率論で問題になる「確率測度として成り立っていない」ケースに二つある

1.一つは、時枝記事にあるような、ヴィタリ集合的なもの
2.もう一つは、非正則分布になるもの。つまり、全事象の積分あるいは和が、無限大に発散する分布になるとき
 このとき、全事象の確率は1であるというコルモゴロフの確率の公理に反しています
3.補足すれば、積分がある有限Mになれば、Mで割って、M→1とできて、各事象は1/Mとかにできます
 ところが、M→∞なら、1/M→0ですから、0をいくら集めても、積分しても、全事象を1に出来ないのです(矛盾と考えることもできる)
4.時枝記事の「確率測度として成り立っていない」というは、”ヴィタリ”ではなく、「非正則分布になる」という問題なのです

(参考)
https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88
ヴィタリ集合
(抜粋)
ヴィタリ集合(ヴィタリしゅうごう)とはジュゼッペ・ヴィタリ(英語版)(Giuseppe Vitali (1905))によって作られたルベーグ不可測な実数集合の基本的な例である。

https://ai-trend.jp/basic-study/bayes/improper_prior/
AVILEN Inc 2020/04/14
非正則事前分布とは?〜完全なる無情報事前分布〜
(抜粋)
非正則分布は確率分布ではない!?

非正則な分布とは、一様分布の範囲を無限に広げた分布のことです。(注:正確には、”ようなもの”で、これに限りません)

積分値が無限大に発散してしまいます。これは、全事象の確率は1であるというコルモゴロフの確率の公理に反しています。

よって、厳密には、非正則な分布は確率密度関数ではありません。なぜなら、確率の公理を満たしていないからです。
220: 2020/10/12(月)06:03:53.68 ID:iRW0qWtH(1/6)調 AAS
>>217
>大学教程の確率論・確率過程論が理解できない人たちよ、哀れなり

「箱入り無数目」記事の箱の中身が確率変数でないことが
理解できない🐄🐖🐓よ、哀れなり
289
(1): 2021/11/06(土)01:59:43.68 ID:nFC14Trd(1)調 AAS
>ここのAをNとすれば、対応する”超限帰納法”としての数学的帰納法が導ける
それは数学的帰納法の証明という問題を超限帰納法の証明という問題にすり替えただけ。
数学的帰納法は超限帰納法とは独立に証明可能。:ある方法で自然数を構成し、それがペアノの公理を満たすことを証明する。
460: 2021/11/22(月)00:45:24.68 ID:HIqODhps(2/8)調 AAS
>>458
>誤魔化そうとしているな
最外カッコが無くてもよいと謳ってる公理を示せないおまえがな。
一方こちらはπを集合表記可能であることを示している。>>440
実際に集合表記することは別問題。おまえは自分の足で歩いて確かめないと地球が丸いことを信じないのか?それこそ幼稚な態度。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.058s