[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
9
(11): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/07/18(土)10:20:48.63 ID:ywyns0bH(8/11)調 AAS
>>8
前スレより
2chスレ:math
補足
<反例証明2>
1.時枝の戦略で、100列並べる前のある箱 m (=100d+k :並べ変えた100列中のk列のd番目の箱)
 が、99%の確率で的中できるとして、時枝戦略による予想では、その箱の数がA0だと示されたとする
2.ところで、時枝記事では、箱に入れる数は、どの箱も出題者の自由だった
3.そこで、>>878と同じようにIIDを仮定すると、そのm番目に入れる数もまた、時枝記事のルール上自由だ
 よって、そのm番目以外を固定したとして
 ・m番目に コイントスで数を入れれば 数の範囲は 0 or 1 の整数で、的中確率は1/2
  (もし、表が出れば ある実数x、裏なら別の実数y を入れるとすれば、的中確率は1/2のままだが、数の範囲は実数全体)
 ・m番目に サイコロで数を入れれば 数の範囲は1〜6の整数で、的中確率は1/6
 ・m番目に 区間[0,1]の一様分布の数を入れれば 数の範囲は0〜1の実数で、的中確率は0 (上記のコイントスの実数版に類似)
4.明らかに、上記3は 1の時枝の反例である(99%の確率で的中など、実現できないことは明白)
QED
(^^;
21: 2020/07/18(土)18:18:51.63 ID:34X7G75E(8/8)調 AAS
既存スレの指摘にまともに反論できていないのに、わざわざ新スレ立ててこっそりやるのは
「反論が無いのはようやく不成立を理解したからだろう」とかやるつもりに違いない。
サイコパスらしい手口だ。バカ丸出し。
61: 2020/07/29(水)00:57:33.63 ID:+yeFOzcU(1/4)調 AAS
>>57
>7.そして、それは、大学の確率教程のIID(独立同分布)を知っていれば、反例になることはすぐ分かる
> 大学の確率教程のIID(独立同分布)を使って、確率変数 X1,X2,・・・Xn,・・・なる可算無限数列を作れば
> コイントスなら確率1/2、サイコロなら確率1/6 なととなって、確率99/100%なんて、どこからも出てこない
コイントスだろうがサイコロだろうが実数だろうが時枝解法なら確率99/100以上です。
時枝解法は当てずっぽう解法ではなく代表から情報をもらう解法ですから、当てずっぽうでの確率は関係ありません。
バカには無理なので諦めて下さい。
175
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/09/16(水)10:19:20.63 ID:64Y83pRt(1)調 AAS
おサルが二匹か

まあ、時枝が分かるためには
大学教程の確率論・確率過程論を学ぶのが先
確率変数の概念も分からんようじゃ、議論にならん

と言って、私が、ここで、
大学教程の確率論・確率過程論を教えるわけにはいかないのは、当然のこと
まあ、教えてもね
チンパンジーにアインシュタインの相対性理論を教えるが如しかもな

自分で勉強してもらうしかないが
どうも、ムリみたいだな

そういうことです
197: 2020/09/22(火)13:50:06.63 ID:jk08YZjf(1/3)調 AAS
>>193

もう>>190で終わってますよ

>私が、ここで、大学教程の確率論・確率過程論を教えるわけにはいかない

分からないことは、教えられないよねw
320
(1): 2021/11/13(土)04:01:21.63 ID:c0RFxVGB(2/8)調 AAS
>>318
>無理に対応漬けするならば
対応”漬け”? 漬物でもつくるのかい?

>0,1,・・・,n,n+1
> 対応↓
>ω,n,・・・,1,0
>つまり、上の列1に対応する有限のnを選ばざるを得ず
>結果、列の長さは有限にせざるを得ない
ああ、そうだよ

>だから、自然数の集合では、無限長の降鎖は、作れないことになる
ωだけでなく、いかなる順序数でもそうなる
超限帰納法で証明できるよ
極限順序数λについて、x<λとなる任意のxで降下列が有限なら
λについても降下列は有限 だってλ>xで、長さが+1されるだけだから

結局、極限順序数から降りるときには無限個の元をすっ飛ばすしかない

ω1を最初の非可算無限順序数とする
ω1>xとなるxは可算順序数だから 
xとω1の間には非可算個の順序数があるが
降りるときには当然すっ飛ばすしかない

順序数aの要素を昇順に並べたとすれば、
いくらでも長い無限上昇列が存在するけど
それをただひっくり返しても無限降下列にはならないんだよ
整列順序の順序を逆転させても整列順序にならないんだから
整列順序で、空集合以外のいかなる部分集合にも
最大元が存在するかい?存在しないだろ?
374: 2021/11/17(水)20:53:12.63 ID:SyxUn7xV(3/4)調 AAS
>>371

 それ>>373なw
480: 2021/11/22(月)13:08:49.63 ID:ox6VDuK/(5/6)調 AAS
>>473
整列集合の元だから数列になる?
まったくお話にならない程基礎がズタボロですねあなた。
なんで数学板に常駐してるんです?あなたに数学は無理ですけど。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.030s