[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
25(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/07/19(日)13:19:00.58 ID:2Y0qBKwb(1/2)調 AAS
>>24
>>>24
って、再帰か? (^^
あんたが、有難く使えよば良いだろ(^^;
66(1): 2020/07/31(金)11:25:50.58 ID:Trt2z5f1(2/7)調 AAS
>>65
つづき
因みに、Alexander Prussは、数学Drで、いま大学教授(Professor of Philosophy)
https://en.wikipedia.org/wiki/Alexander_Pruss
Alexander Pruss
(抜粋)
Professor of Philosophy and the Co-Director of Graduate Studies in Philosophy at Baylor University in Waco, Texas.
Biography
Pruss graduated from the University of Western Ontario in 1991 with a Bachelor of Science degree in Mathematics and Physics. After earning a Ph.D. in Mathematics at the University of British Columbia in 1996 and publishing several papers in Proceedings of the American Mathematical Society and other mathematical journals,[4] he began graduate work in philosophy at the University of Pittsburgh.
(引用終り)
以上
68(4): 2020/07/31(金)12:03:50.58 ID:Trt2z5f1(4/7)調 AAS
>>67 補足の補足
さらに補足します
1.時枝では、決定番号が、非正則な分布になります
つまり、決定番号は自然数ですが、数列が可算無限という設定ですので
決定番号は自然数N全体を渡ります。これが、問題です
2.例えば、宝くじでいえば、発行枚数M枚で、番号を1〜M番までとして
一等賞1枚、二等賞を10枚とします。発行枚数Mが有限なら、確率的取り扱いができます
3.ところが、M→∞とすると、「確率測度として成り立っていない」ことになります
つまり、無限枚発行したら、当る確率は0。本来、二等賞は、一等賞の10倍の確率で当たるはず
ところが、1/10という計算が正当化されません。なぜなら、二等賞も、一等賞も、当たる確率0ですから
4.このように、全事象が無限大になるときは、要注意なのです
因みに、正規分布のように、分布のすそが減衰する場合、x→∞で、急速に0に減衰する場合、積分値は有限になります
このような場合には、正則分布であり、「確率測度として成り立っている!」となります
以上
128: 2020/08/06(木)00:45:06.58 ID:Soxz+OQO(1)調 AAS
瀬田よ
別に無理難題を聞いてる訳じゃないぞ、ごくごく基本的なことしか聞いてないぞ
なぜそこまで頑なに逃げる必要があるのか?
291(2): 2021/11/07(日)15:02:03.58 ID:V+KShK58(1)調 AAS
順序数全体の列に関して
2chスレ:math
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(注:<ωのすぐ左に項がなくても、左側にある項はすべて入るとする
とかいう「俺様ルール」を設定する奴がいるが、そういう場合は
≪ωとか違う記号をつかうのが「皆様ルール」)
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
実は、<と≪のみで、いかなる順序数全体の列も書ける
つまり
1.0の左には何も書かない
2.後続順序数αの左には<を書く <α
3.極限順序数βの左には≪を書く ≪β
これだけでOK
338(1): 2021/11/15(月)07:03:39.58 ID:PvleFi78(1/4)調 AAS
>>337
そもそも無限シングルトンが集合でない
という根拠の一つに下降列がでてきた
ω>・・ >n>・・>1>0 が下降列ではないとすると、
何で無限シングルトンが集合でないかというと
下降列の各項に()を対応させた場合
ωに対応する()を外したら
その最外にはもはや{}が存在せず
要素をとることができなくなるから
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.095s