[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
69(2): 2020/07/31(金)12:12:13.52 ID:Trt2z5f1(5/7)調 AAS
>>68
(引用開始)
2.例えば、宝くじでいえば、発行枚数M枚で、番号を1〜M番までとして
一等賞1枚、二等賞を10枚とします。発行枚数Mが有限なら、確率的取り扱いができます
3.ところが、M→∞とすると、「確率測度として成り立っていない」ことになります
つまり、無限枚発行したら、当る確率は0。本来、二等賞は、一等賞の10倍の確率で当たるはず
ところが、1/10という計算が正当化されません。なぜなら、二等賞も、一等賞も、当たる確率0ですから
(引用終り)
付言しておくが
「当たる確率0」は、当たりが存在しないことを意味しない。
これも、時枝記事の確率トリックのタネの一つだろう
当たりは存在するが、確率計算としては、0 ないし、むしろ「確率計算はできない(確率の公理に反する)」と言った方がいいかもしれない
98: 2020/08/02(日)18:34:44.52 ID:A3naNbKA(2/2)調 AAS
>>92
>1.決定番号dの範囲は、有限では収まらない。1〜∞ を渡る
渡りませんねー
決定番号はその定義から自然数ですよ?∞なんて自然数はありません。
基本からやり直して下さいねー
>2.時枝のキモは、ある有限のDをうまく選ぶと、確率99/100で、D >= d とできるというもの
全然分かってないですねー Dを上手く選んではいけませんよー
kをランダムに選べば自動的にDも定まります。逆にDを上手く選ぶにはkを恣意的に選ぶしかなく、そしたら確率99/100以上は言えなくなりますよー
サイコロの目を恣意的に選ぶ・・・それは八百長ですねー
>3.もし、決定番号dが、正規分布のように、dの大きなところで、早く減衰して、d→∞ で その頻度が0になる場合は、正則分布になり、確率計算は正当化できる
回答者が数当てに使う決定番号は一組の (d1,d2,...,d100)ですねー これは出題者が箱を全て閉じた瞬間に定まってますよー
これ一つですから分布なんてありませんよー 強いて言えば1点分布:(d1,d2,...,d100)である確率=1、それ以外の確率=0
減衰もへったくれもありませんよー
>4.一方、時枝記事の決定番号dは、減衰しない。だから、非正則分布になり、確率測度として正当化できず、確率計算に使えない(∵確率の和を1に出来ないなど)
決定番号は確率変動しませんよー 出題者が箱を全て閉じた瞬間に確率1で定まりますからー
箱入り無数目の確率分布は↓の引用から分かる通りΩ={1,2,...,100}上の離散一様分布ですねー
「さて, 1〜100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」
>5.それを、数学的にきちん詳しくと論じているのが、mathoverflowの二人の数学Drです
哲学先生PrussさんはDec 19に「we win with probability at least (n-1)/n. That's right.」と成立を認めてますねー 間違いに気付かれたようですねー
もしPrussさんの発言を引用するならDec 19以後のものにして下さいねー 間違いに気づく前の発言の引用は無意味ですからー
163: 2020/09/07(月)03:01:51.52 ID:uKa1rOlY(1)調 AAS
>>160
>決定番号で有限のd1を得た
>これを、未知の無限大の可能性のあるd2との大小比較(=勝ち負け、つまり、d2>d1なら負け)を考えると
>d2は、∞まで可能性があるので、どんなに大きなd1を得ても、必敗予想になるべきです
あなたが言ってるのは
「Nのいずれか1元を無作為に選んだ時、ある自然数より小さい確率」
ですね。これ、箱入り無数目の確率(以下に引用)とはまったく別モノですね。
「さて, 1〜100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」
その前にそもそも「Nのいずれか1元を無作為に選ぶ方法」が示されてません。Nは無限集合ですから有限集合のようなわけには行きませんよ?
178: 2020/09/17(木)06:35:53.52 ID:PUn6GZi6(1/3)調 AAS
>>177
そもそも「箱入り無数目」における確率変数の認識が間違っとるが
さらにいえば、その間違った認識でも「当たる確率0」は導けないが
せいぜい「非可測だから計算不能」としか言えない
◆yH25M02vWFhPの主張は誤りだと、確率論で証明できる
ま、非可測集合すら理解できない◆yH25M02vWFhPには無理かwwwwwww
239: 2020/11/02(月)06:46:40.52 ID:PUodusEe(3/6)調 AAS
2chスレ:math
715 特別支援学校教諭 2020/11/02(月) 06:30:07.90ID:PUodusEe
>>711
>シングルトンによる後者関数であっても極限順序数は可能ですよ
より正確にいえば
「後者関数による後者がシングルトンであっても、極限順序数は生成可能」
で、核心
◆yH25M02vWFhP氏、がいってるのは
「後者関数による後者がシングルトンならば、極限もシングルトン」
ですよね?
それ、間違ってます(・Д・)9 ビシッ!
後者関数がいかなるものであっても、
無限公理で定められるωは無限集合(正確には可算無限集合)
266: Mara Papiyas ◆y7fKJ8VsjM 2021/10/09(土)07:35:50.52 ID:qQhss2MU(2/8)調 AAS
雑談 ◆yH25M02vWFhP こと「トンチン・カーン」は
添え字(いまの場合 n∈Nと ω)の順序関係で
大小が分かる!と「馬鹿思考」に陥ってるが
もちろん、んなこたぁない
例えば
1={{}}と、3={{{{}}}}が、1<3となるのは
{{}}∈{{{}}}∈{{{{}}}}
となるからであって、添え字とは全く関係ないw
そして任意の自然数n={・・・{}・・・}と、ω=・・・{}・・・が
n<ωとなる、と証明するには
{・・・{}・・・}∈・・・∈・・・{}・・・
となる列が存在すると示すしかないが、そもそも
・・・{}・・・ が集合でなく
x∈・・・{}・・・となるxが存在しないのであれば
{・・・{}・・・}∈・・・∈・・・{}・・・
となる列も存在せず、n<ωなんて示しようがない
添字以前の問題であって、
「有向集合ガー、有向点族ガー」とかいうのは
白痴の戯言である(一刀両断!)
有向集合
https://ja.wikipedia.org/wiki/%E6%9C%89%E5%90%91%E9%9B%86%E5%90%88
「数学における
有向集合(ゆうこうしゅうごう、directed set)、
有向前順序集合 (directed preordered set) あるいは
フィルター付き集合 (filtered set) とは、
空でない集合 A と反射的かつ推移的な二項関係(つまり前順序)≤ との組 (A, ≤) であって、
さらに任意の二元が上界を持つ、
すなわち A の任意の元 a, b に対して、
A の元 c で a ≤ c かつ b ≤ c を満たすものが必ず存在するものをいう。」
528: 2021/12/07(火)19:39:37.52 ID:NlBzaa6N(1)調 AAS
>>525 >レーヴェンハイム-スコーレムが分かってないじゃんw
>>526 >おまえがな。
んだな
例えば最初の無限順序数ωより大きい超準自然数が存在する、なんて証明できない
超準自然数が存在する超準モデルにおける超準ωは
その超準モデルにおけるいかなる超準自然数よりも大きい
やっぱS ETAはレーヴェンハイム・スコーレムが全然理解できない白痴だったな
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.035s