[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
19: 2020/07/18(土)18:09:13.51 ID:MUPMdT1w(2/3)調 AAS
>>17
どんな実数列100列を選んだところで、
その決定番号は必ず自然数になるし
他の決定番号より大きな決定番号は
たかだか1つしかない

この時点で ◆yH25M02vWFhPは死んだw

このスレ終了wwwwwwwwwwww
91
(1): 2020/08/02(日)10:09:42.51 ID:A3naNbKA(1/2)調 AAS
>>90
数当てに使う決定番号は100個の定数なのになんで∞が出て来るんですか?
まさか100=∞という新理論ですかー?

100個の決定番号のうち単独最大はたかだか1個である Y/N

逃げずに答えて下さいねー
107: 2020/08/03(月)12:08:28.51 ID:SY3ylgSX(2/11)調 AAS
>>106
>ところが、問題の決定番号なるものは、あきらかに 非正則な分布です
確率計算で使う100個の決定番号の組(N^100の元)はsが定まると同時に定まります。
sから100列を作る方法やR^N→R^N/〜の切断を決めると、写像f:R^N→N^100、f(s)=(d1,d2,...,d100) も決まることを理解しましょう。
N^100上の定まった一点は分布の意味を持たない、強いて分布と言うなら正則な一点分布です。非正則ではありません。

Prussさんは1週間ほどで間違いを認めたのに、あなたは5年経っても認められないようですねー
200
(1): 2020/09/22(火)14:16:22.51 ID:jk08YZjf(3/3)調 AAS
>>190 再掲

時枝、Pruss、セタ 三者の違い

1.箱の中身に関して
 時枝
  箱の中身は定数
  出題者が箱の中身を入れられるのは最初の一回だけ
 Pruss
 セタ
  箱の中身は確率変数
  出題者は毎回、箱の中身を入れ替えられる

2.箱の選択に関して
 時枝
 Pruss
  選択される列の番号は確率変数
  回答者は毎回、列を選びなおせる(つまり箱も選び替えられる)
 セタ
  選択される箱の番号は定数
  回答者は最初に列を選び、記事の戦略で箱を選んだら
  再び選び替えることはできない(つまり同じ箱で予測する)

3.予測的中確率について
 時枝
  少なくとも99/100 運が良ければ1
 Pruss
  計算不能(非可測性&non conglomerabilityにより)
 セタ
  0(箱の中身の確率分布のみで計算可能)

 セタの主張は、「2.箱の選択に関して」で
 セタの独善的なルールを適用することによってのみ成立する
 
 セタがこのことを明確に述べないのは
 自分でも「箱を選びなおせない」というルールが
 独善的だと気付いているからだろう
366: 2021/11/17(水)07:15:52.51 ID:5EFHliSw(3/3)調 AAS
次に、

Y={…{{}}…}

と置く。もし Y が集合ならば、上述の定理により、Y の任意の元は集合である。
今の場合、…{{}}… ∈ Y なのだから、上述の定理により、
…{{}}… は集合ということになる。よって、

A = …{{}}…

と置けば、この A は集合ということになる。では、A の元は一体どのような形をしているのか?

さあ答えよ。
368: 2021/11/17(水)12:17:44.51 ID:eUQcanYC(1)調 AAS
>>367
> 読めば?w
やはり分かってないんですね

>>>363
>> 1. ε∋ε∋ε∋… なる∈無限下降列が存在するからεは正則性公理を満たさない。
>それ間違っているよ
つまりεが正則性公理を満たすと?
やはり何も分かってないですね
472: 2021/11/22(月)08:23:00.51 ID:+nRRrBLA(4/9)調 AAS
数列の「正確な」定義
https://ja.wikipedia.org/wiki/%E6%95%B0%E5%88%97

ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
S を自然数全体の集合 N またはその n における切片 {0, 1, 2, …, n} とするとき、
S から実数(あるいは複素数)への関数 a を数列(すうれつ、英: sequence)と呼び、
順序付けられた数の並びとして
 a0, a1, a2, …, an, …
のように記す。
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー

上記の定義によれば
そもそも値域{0,1,2,…,ω}のωは実数でも複素数でもないからアウトだが
仮にそこについては拡大を許すとしても
定義域がNもしくはその部分集合だから、順序づけられた並びが
 0,1,2,…,ω
で、・・・に任意の自然数が入るものは存在し得ない
1.・・・に任意の自然数が入るなら、ωは像に入らない
2.ωが像に入るようにする場合、Nのある部分集合{0,1,2,…,n}を
  定義域にするしかなく、その結果・・・に入らない自然数が(無限個)存在する
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.030s