[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
80: 2020/07/31(金)23:16:38.49 ID:rnzodbOa(7/8)調 AAS
あぁ、和訳なんてしなくていいぞ?どうせ間違ってるから
Prussの主張の結論をおまえの言葉で書いてくれ、理解して言ってるなら書けるはずだ
132: 2020/08/07(金)19:59:18.49 ID:B3bne7H4(1)調 AAS
>>130
> まっとうな確率計算はできません
通常のサイコロの確率も正しくない(まっとうな確率計算はできない)
という結論が導かれる素晴らしい考察です
136: 2020/08/08(土)12:25:31.49 ID:UfE8aa17(1/3)調 AAS
>>135
論理が分からない・直観でしか考えられない瀬田のような数学音痴が引っかかる、だから数学パズルなんだよ。
間違いに気づいて去って行ったのは不成立派。Prussでさえ成立を認めた。未だに認められない頑固なバカは瀬田一人。
250(1): 2021/08/22(日)06:44:02.49 ID:sTIzdDwF(1/7)調 AAS
これは「”Bがもし存在するなら”Aのべき集合に含まれる」というだけじゃないんですか?
>すなわち f のもとでの A の像の元でない A の少なくとも 1 つの部分集合の存在を示せば十分である。そのような部分集合は次の構成によって与えられる
分出公理は恐らく空集合の場合でも集合自体は存在するという考えですか?
分出公理によって存在が保証された集合は、空集合でない事も保証されますか?
しかしBが空集合の場合、Bの全要素は写像f(x)に含まれると言えませんか?
言える場合、これはBの定義と矛盾します。
言えない場合、「空集合の要素が何かの集合に属している」と言明できないという事ですが、
Bの定義に「Bの全要素がAに含まれる」という部分があるので、この定義は成立しません。
即ちBの定義は「空集合の要素が何かの集合に属している」と言えるのか言えないのか、
ダブルスタンダードになっています。
267(1): 2021/10/09(土)07:38:09.49 ID:G87Fbttq(1/5)調 AAS
質問なんですが、ZF公理系というのは大学の授業で習いますか?
某数学科卒の知り合いが、「そんなもん聞いたことねー」と言っていたのですが。
313: 2021/11/12(金)12:13:05.49 ID:ub/DbMmc(2/3)調 AAS
>>309
><上昇列 0<1<・・・<n<ω は有限列
>そりゃあそうです
ではここで終わり
>「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」
>とすり替えてるよね
中卒君が取り違えてるだけ
>0,1,・・・,ω は、全順序だよね
これが中卒君の取り違え
だれも順序集合の要素の羅列なんていってない
君が勝手に幻聴を聴いてるだけ
>”<”を書くか、書かないか には無関係に、全順序だよね
無関係と考える中卒君が無思索
<を書くのだから、<の直左と直右が必須
つまり君が考える「羅列」ではωの左に<は書けない
なぜなら、ωの最左(つまりω未満の最大の順序数)がないよね
なんでそこ理解できない?君、🐎🦌?
>>310
>”<”を狭く考えすぎると、おかしくなる
>例えば、”<”の左右に必ず具体的な数を与えないと 使えないとすると、
>実数Rのように 連続無限になると、とたんに不便になる
なに頭オカシイこといってんの?
別にRの元を順序通りに羅列する必要もなければ、
各要素の左右に<を書く必要もないけど
なんでそこ理解できない?君、🐎🦌?
>>311
もう中卒の🐎🦌は数学板に書くなよ
337(1): 2021/11/14(日)22:49:13.49 ID:jzMQoxeJ(1)調 AAS
>>326
>0,1,・・ <n< ・・ <ω
>としても,<ωは全ての自然数より大、言い換えれば、全ての自然数はω未満
>と解釈すれば良い
>それで
>何の問題もない
ω>・・ >n>・・>1>0 が下降列ではないという問題がある
ωの次が無いから
340(1): 2021/11/15(月)19:07:02.49 ID:PvleFi78(2/4)調 AAS
>>339
>ノイマン構成 N(=ω)={0,1,2,・・・}
>で、{}を外すと 0,1,2,・・・ となる
「無限シングルトン」を諦めて、ノイマン構成と同じく
「有限シングルトンの全てからなる無限集合」とするなら
・0,1,2,・・・のどの有限シングルトンにも最外の{}がある
・0,1,2,・・・のどの有限シングルトンも有限回で{}に達する
という性質を満たすので何の問題もないが
>最外は存在しないのではなく、エンドレスの無限状態となる(可能無限)
エンドレス(=最大元が存在しない)なのは別に問題ない
>それは、”可能無限”が本来持つ性質であって
最大元が存在しないのは、極限順序数の性質
>ノイマン構成 N(=ω)も同じ
「…も同じ」ではなく
極限順序数を集合として実現する場合
避けられないこと
「ノイマンと同じ」と認めるのは
「無限シングルトンが集合として存在し得ず
無限シングルトンが集合だというのは全くの初歩的誤り」
と認めることだけど、それでいいの?
430: 2021/11/21(日)09:02:23.49 ID:ZtueUz+V(6/15)調 AAS
>>427
>{{…{{}}…}}には、ω+1が対応するよ
{{…{{}}…}}を{{{…{{}}…}}}と書けるよな?"…"はカッコを省略してるんだろ?
ω+1={{{…{{}}…}}}
ω={{…{{}}…}}
ωの前者={…{{}}…}
はいアウト!
言い訳見苦しいぞ
実は無限重カッコ{{{…{{}}…}}}から有限個のカッコを取り除いても変わらないから
おまえのトンデモ論だとω+1=ω=ω-1 となるw
バカ過ぎw
536: 2021/12/23(木)08:04:29.49 ID:ypzkaLik(2/2)調 AAS
メモ
http://www.math.mi.i.nagoya-u.ac.jp/~kihara/pdf/teach/Martin-conjecture.pdf
集中講義「マーティン予想」?†
木原 貴行
名古屋大学 情報学部・情報学研究科
最終更新日: 2018 年 12 月 29 日
? 本講義ノートは,2018 年度秋期開講の東北大学大学院理学研究科数学専攻における「力学系理論特選」,「応用数理
特論 A」及び「応用数理 特殊講義 GII」の集中講義「マーティン予想」の内容をまとめたものである.
† 講義のページ: http://www.math.mi.i.nagoya-u.ac.jp/?kihara/teach.html
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.030s