[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
94: 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/02(日)16:52:24.28 ID:NrBYtRST(4/8)調 AAS
>>92 タイポ訂正
ある有限のD点を基準として、それより点数に低い人は何パーセントと言っても、いくらでも高得点者が居るような場合は、確率計算に乗りませんね
↓
ある有限のD点を基準として、それより点数が低い人は何パーセントと言っても、いくらでも高得点者が居るような場合は、確率計算に乗りませんね
分かると思うが
260(1): 2021/08/22(日)08:05:50.28 ID:sTIzdDwF(5/7)調 AAS
これはBが空集合ではないことを示す必要があるのでは?
>すなわち f のもとでの A の像の元でない A の少なくとも 1 つの部分集合の存在を示せば十分
f のもとでの A の像=f(x)
A の少なくとも 1 つの部分集合=B
Aのべき集合はAの全要素を含まなければならないので
Bが空集合でないなら主張は証明される。
300: 2021/11/10(水)08:31:27.28 ID:jiYnHr+P(1/2)調 AAS
これ良さそう
http://iso.2022.jp/
About
Twitter https://twitter.com/waidotto
http://iso.2022.jp/math/uniqueness-of-decimal-expansions-and-connectedness-of-spaces.pdf
小数展開の一意性と空間の連結性
Uniqueness of Decimal Expansions and Connectedness of Spaces
y.? 2019 年 7 月 9 日
https://twitter.com/5chan_nel (5ch newer account)
412(1): 2021/11/20(土)23:33:11.28 ID:5AMtJA2Q(4/4)調 AAS
>>408
(引用開始)
>定義:∀n∈N fsz(n) < fsz(ω) とすれば良い
>それで、well-definedです
早速質問
<と∈の関係は?
例えばfsw(ω)={・・{{・・{{{}0}1}2・・}n-1}n・・}ω の要素
・・{{・・{{{}0}1}2・・}n-1}n・・ は ωより小さい? どのnよりも大きい?
もし両方ともYesなら、
「ωは0,1,2,…より大きい最小の順序数」
という定義に真っ向から反するね
だって、任意のnについて
n<・・{{・・{{{}0}1}2・・}n-1}n・・<ω
だろ?
(引用終り)
それって、ノイマン構成でも同じことだよ
>>401 のノイマン構成 ω={0, 1, 2,・・,n・・・}で
最外カッコを外したら、0, 1, 2,・・,n・・・ (全ての自然数)となる
”n・・・”中の ”・・・”の部分は、ωより小さく、どのnよりも大きい
そして、それは本来無限列が持つ性質そのもの
つまり、どの有限nよりも大きい自然数が存在し、そのような自然数は無限にあるが、全部有限の自然数で、ωより小さい
完全に禅問答ですがね
そこで、躓いたんだね
>>409
(引用開始)
0=0
1=0,1
2=0,1,2
・・・
ω=0,1,2,…ω
(引用終り)
勝手に話しを、ねつ造しているよね
それって、ショルツェ氏論法だよね
勝手に、定義を書き換えて、不等式が成立しなくなったと喚く、彼の藁人形論法そっくりじゃんw
486: 2021/11/22(月)18:06:08.28 ID:zlfxXly+(2/3)調 AAS
まぁまたもやSetAは公知の理論逸脱してた自らの見解を、引っ込めれば良いものを今回も引っ込めず
いつもの様に選択公理を連呼する事による新機軸理論主張に論点ずらししたわけだな。
要約すると「意欲的に解説してたつもりが、またもや
『じつは、こんかいもふつうとはちがう、ぼくのかんがえたあたらしいすうがくでした』とさ」。またかよ。
いつまでSetAはムービングゴールポスト論法を繰り返すつもりなんだか
547: 2022/03/05(土)09:21:19.28 ID:hhayz5nm(1)調 AAS
これ、いいね
https://mathematics-pdf.com/column/incomplete.html
数学 PDF よしいず
コラム > ゲーデルの不完全性定理について
ゲーデルはω-無矛盾という仮定のもとで第一不完全性定理を証明しました.
ゲーデルの第二不完全性定理とは, 「自然数論の公理を含む無矛盾な形式的体系の無矛盾性は,その体系内では証明できない」というものです.
これは,自然数論の公理を含む数学の理論が, 少なくとも有限の立場では自分自身の正しさを示すことは不可能であることを意味します.
証明における主なステップは,次の通りです.
数学を形式的に表現することに関して,「各自然数ごとに表現可能」という概念を導入する.
「原始帰納的」と呼ばれる関数が各自然数ごとに表現可能であるという,「表現定理」を証明する.
数学の証明の一部を「ゲーデル数」と呼ばれる数に対応させることで証明をある意味で計算できるようにする.
カントールの対角線論法のアイデアを用いて,「対角化定理」と呼ばれる,論理式における不動点定理のようなものを証明する.
決定不可能な論理式,つまり自分自身もその否定も体系内では証明できないような論理式 U を構成する.(第一不完全性定理)
「体系は無矛盾である」という命題を体系内の論理式として表現する. その論理式を C とおく.
「 C が体系内で証明できるならば U も体系内で証明できる」ということを証明する. このとき,U は体系内では証明できない論理式だから,C もまた体系内では証明できない論理式である. (第二不完全性定理)
上の証明のステップ6において, 「形式的体系が無矛盾である」という命題を表現する論理式の選び方は一通りではありません.
クライゼルは,無矛盾性を表現する論理式で, ゲーデルが不完全性定理の証明で用いた論理式とは別のものをとると, それが自然数論の公理を含む形式的体系のなかで証明できる場合があることを注意しました.
これは,数学の命題を形式的に表現する絶対的な方法が確定しているわけではないことを示唆しています.
関連書籍
前原昭二(著): 数学基礎論入門,朝倉書店,1977
広瀬健/横田一正(著): ゲーデルの世界,海鳴社,1985
日本数学会(編): 岩波数学辞典第3版 184 数学基礎論,岩波書店,1985
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.032s