[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
37(5): 2020/07/27(月)11:33:53.14 ID:dppBRBhf(1/5)調 AAS
<転載>
IUTを読むための用語集資料集スレ
2chスレ:math
266 名前:132人目の素数さん[sage] 投稿日:2020/07/27(月) 07:24:54.40 ID:iLzqinnX
2つの無限列s1,s2∈R^Nについて
一致する項の番号の集合が
Nの補有限部分集合(つまりNにおける有限集合の補集合)
ならば同値、というだけのことだろう
(これが、フレシェ・フィルタを用いた同値関係の再定義)
(引用終り)
それって、時枝記事について、何も言ってないに等しいぞ!
1.フレシェ・フィルタの概念で書き換えて、なにか良い事あるのか?
2.フレシェ・フィルタの概念で書き換えて、フレシェ・フィルタの既にある定理とか系とか使って、なにか言えるのか?www
(参考)
https://ja.wikipedia.org/wiki/%E8%B6%85%E3%83%95%E3%82%A3%E3%83%AB%E3%82%BF%E3%83%BC
超フィルター
超フィルター(ちょうフィルター、英: ultrafilter)または極大フィルター(きょくだいフィルター、英: maximal filter)とは順序集合上で定義されたフィルターの中で極大なものをいう。
冪集合上の超フィルター
基本性質
・X が有限集合のとき U が自由な超フィルターだとすると Φ = Xc ∈ U より矛盾するので、有限集合上には単項フィルターしか存在しない。
・無限集合 X の補有限部分集合全体 Pfin(X) := {A ⊆ X : |X \ A| <= ∞} は真のフィルターとなりフレシェ (仏: Frechet) フィルターと呼ばれる。超フィルターが自由なこととフレシェフィルターを含むことが同値。
・無限集合 X の超フィルター全体 Ult(X) の濃度は、X の冪集合 P(P(X )) の濃度と等しくなる(これはフィルター全体や自由な超フィルター全体の濃度とも等しい)。
・無限集合 X 無限基数 κ < |X| にたいし、X 上の集合族 Pκ(X) := {A ⊆ X : |X \ A| < κ} は真のフィルターとなり(特に κ = |X| のとき)一般化されたフレシェ (英: generalized Frechet) フィルターと呼ばれる。X 上の超フィルターが κ-一様なことと、Pκ(X) を含むことが同値。
つづく
154: 2020/08/10(月)08:43:25.14 ID:EXUgpgw2(1)調 AAS
>>153
>箱入り無数目の確率計算に「決定番号の分布」なるものは使われていません
その通り
Prussの指摘で意味があるのは
「列が定数の場合の確率計算から、
列が確率変数となる場合の確率を出すのは
conglomerabilityが成立する場合に限られる
The Riddleではその性質が成立しないから無理」
という点だけ
列が定数の場合のThe Riddleの計算については
Prussも否定できなかった 当たり前だ
100本のあみだくじで外れが1本の場合の
確率計算と同じだから
ここで「あみだくじの全種類が必要」とかいうのは馬鹿
176: 2020/09/16(水)23:58:38.14 ID:H2TkBIYN(1)調 AAS
>>175
誰も確率論・確率過程論を教えてくれなんて言うてまへんがな
The Riddle不成立を証明してごらんとは言うたが
証明まだ?
206: 2020/10/11(日)12:04:03.14 ID:85hcVO5n(2/5)調 AAS
The Riddleの成否から逃げ続ける瀬田の負け。
The Riddle不成立と答えたら選択公理と同値類を理解できていないことになるし、
The Riddle成立と答えたら小学校レベルの確率を理解できていないことになる。
だから瀬田は逃げ続けるしかない。
352(2): 2021/11/16(火)11:00:06.14 ID:2EuFDWdY(1/2)調 AAS
>>345 補足
(引用開始)
ノイマン構成でも同じこと
ノイマン構成 N(=ω)={0,1,2,・・・}で
{}を外すと、0,1,2,・・・ なる列ができるが、これはエンドレス無限(可能無限)
0,1,2,・・・は、一番右は決められない。エンドレスだから
しかし、可算無限列 0,1,2,・・・は、厳然と存在するよね
(引用終り)
1.0,1,2,・・・ なる列ができる。これは、自然数の列で、無限公理より、全ての自然数を尽くすエンドレス無限(可能無限)
2.まず、これを認めましょうね
3.0,1,2,・・・ なる列で、一番右がない? 当然でしょ、エンドレス無限(可能無限)だから
4.0,1,2,・・・ なる列は、集合の列ではない?と。 一番右がないので、”・・・”は集合列ではなくなる? ご冗談でしょ!
5.明らかに、0,1,2,・・・ なる列を集合列とするために、無限公理を置いたでしょ!
6.あとは、0,1,2,・・・ なる エンドレス無限(可能無限)を種として、他のいろんな数学で必要な無限を作れるよ
時枝の可算無限個の箱>>345とかね、いろんな無限が扱えるよ
だから、無限公理を一つ置いて、自然数Nを作れば、公理系としては取りあえずは、十分ってことだ
自然数Nから派生する類似のエンドレス無限(可能無限)を、一切認めないとか、アホすぎる
355(1): 2021/11/16(火)12:19:52.14 ID:Vu44Pkc8(2/5)調 AAS
>>354
> ”すべての自然数が並び終え”た後だ
すべての自然数が並び終えるのはいつですか?
そもそも無限に存在するのに並び終えるんですか?
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.040s