[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
95
(3): 2019/10/05(土)21:51 ID:kZwmbLNI(39/44)調 AAS
>>91-92
英語読めませんか?

Infinity
This final axiom asserts the existence of an infinitely large set which contains the empty set, and for each set a that it contains, also contains the set {a}. (Thus, this infinite set must contain ∅, {∅}, {{∅}}, ….)

つまり>>29で述べたω’(={{},{{}},{{{}}},…})
∃ω’.{}∈ω’∧(∀x.x∈ω’⇒{x}∈ω’)
だといってます

決して{・・・{Φ}・・・}ではありません
101: 2019/10/05(土)22:03 ID:o3KPqddg(8/8)調 AAS
あ、間違った>>94でなく>>95です。
兎にも角にもΩの定義をキチンと与えないとダメです。
102
(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/05(土)22:18 ID:JrhjRl4x(44/46)調 AAS
>>95
ありがとう
ええ、確かにそうです

ですが、その英文の記述は
{・・・{Φ}・・・}なる無限多重カッコ{}の集合を否定するものではないですよね

ツェルメロの自然数構成で、後者関数はあくまで、aに対して{a}ですからね
(下記の(a)と(b) とですね)

私は、N={Φ, {Φ}, {{Φ}}, …}は、自然数の集合として、決して否定するものではありませんよ

(追加引用)
https://plato.stanford.edu/entries/zermelo-set-theory/
Stanford Encyclopedia of Philosophy
Zermelo’s Axiomatization of Set Theory Michael Hallett
First published Tue Jul 2, 2013
(抜粋)
II.Axiom of Elementary Sets
This asserts
(a) the existence of a set which contains no members (denoted ‘0’ by Zermelo, now commonly denoted by ‘Φ’);
(b) the existence, for any object a, of the singleton set {a} which has a as its sole member; and
(c) the existence, for any two objects a, b, of the unordered pair {a, b}, which has just a, b as its members.
110
(5): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/06(日)07:57 ID:d8OQiN+r(1/27)調 AAS
>>95 追加

>Infinity
>This final axiom asserts the existence of an infinitely large set which contains the empty set, and for each set a that it contains, also contains the set {a}.
> (Thus, this infinite set must contain Φ, {Φ}, {{Φ}}, ….)

で、N={Φ, {Φ}, {{Φ}}, …}で、自然数の集合Nができるけど
無限公理で最初は、Nよりも大きな集合ができるんですよね、確か(下記wiki)

それを、最小の無限集合に絞って小さくする操作が必要です
最小の無限集合に絞った結果、Nには有限の元nしか含まれないものができる

なので、無限公理でできた最小に絞る前の無限集合には、
自然数を表現する以上の
つまり、真に無限の{・・・{Φ}・・・}なる無限多重カッコ{}の集合が
含まれていることは
明白ですね
QED

(参考)
https://en.wikipedia.org/wiki/Axiom_of_infinity
Axiom of infinity
(抜粋)
In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo?Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing the natural numbers. It was first published by Ernst Zermelo as part of his set theory in 1908.[1]

Thus the essence of the axiom is:
There is a set, I, that includes all the natural numbers.

Extracting the natural numbers from the infinite set
The infinite set I is a superset of the natural numbers. To show that the natural numbers themselves constitute a set, the axiom schema of specification can be applied to remove unwanted elements, leaving the set N of all natural numbers. This set is unique by the axiom of extensionality.
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.047s