[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
686(1): 2019/12/07(土)23:01 ID:uZFmzNJe(27/27)調 AAS
>>684
>正則性公理は、真の無限降下列を禁止にするが
「真の」は要りません 無限降下列は正則性公理と矛盾します
ノイマン構成のω={{},{{}},{{},{{}}},…}でも、
ツェルメロ構成のΩ={{},{{}},{{{}}},…}でも、
無限降下列は存在しません
>シングルトンの無限列の存在を否定し
否定してませんよ
「有限重シングルトンの全体からなる無限集合」を
「シングルトンの無限列」と誤読した
あなたのつたない英語力は全面否定しましたが
あの英語の文章は中1でもわかりますから
690(4): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/08(日)08:30 ID:lCvi6NdQ(1/2)調 AAS
>>686
>「有限重シングルトンの全体からなる無限集合」を
>「シングルトンの無限列」と誤読した
1.無限公理を適用して、全ての後者関数を含む無限集合の存在を認める
2.そうすると、無限集合はできるが
このままでは、過剰な後者を含んでいる
欲しいのは、ジャスト自然数の集合N
3.従って、自然数集合Nには不要な、過剰な後者を取り除きます
(要は、無限集合の最小の集合が自然数の集合Nです。無限集合たちの共通部分を取るのでしたね。詳しくは、自然数のノイマン構成のテキストでも見て下さい(過去レスでも書きましたが))
4.で、1〜3は、ツェルメロ構成の後者関数 an=suc(an-1)={an-1}を使って同じことができる
5.私が、>>684で言っていることは、
自然数集合Nに不要な過剰な後者の中に、順序数ωに相当する可算多重シングルトンが存在する
ということですよ
QED(^^
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.038s