[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
614(1): 2019/12/06(金)13:44 ID:U5iqUuKj(1)調 AAS
>>613
何が関係あって何が関係ないかあなたの現時点での学力でわかるはずありません。
そもそもZermelo順序数が超限帰納法を用いて定義されている事すら理解できるはずありません。
それが何かわかってないんだから。
617(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/07(土)08:42 ID:H2e5WMAT(1/14)調 AAS
>>614
無理するな(^^
(>>612より)
https://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN235181684_0065
(このサイトからPDFが落とせる)
Untersuchungen uber die Grundlagen der Mengenlehre. I. Von E. ZERMELO in Gottingen. P261
(抜粋英訳)
P263
Axiom I. If every element of a set M is simultaneously an element of N and vice versa, that is, if M = E N and N = E M at the same time, then M = N is always M or shorter: every set is determined by its elements.
P266
But in order to secure the existence of "infinite" sets, we still need the following axiom, which derives from its essential content by Mr. R. Dedekind.
Axiom VII. The domain contains at least a set Z which contains the null set as an element and is such that each of its elements a is another element of the form {a}, or which with each of its elements a is also the corresponding set {a } as an element.
(Axiom of the infinite.)
14 VII. *) If Z is an arbitrary set of the properties required in VII, then for each of its subsets Z1 it is definite whether it possesses the same property. For if a is any element of Z1 ', it is definite whether {a} ∈ Z1,
and all the elements a of Z1 thus constituted form the elements of a subset Z1' for which it is definite whether Z1 '= Z1 or Not. Thus, all subsets Z1 of the considered property form the elements of a subset T = E UZ,
and the average corresponding to them (# 9) Z0 = DT is an amount of the same nature.
つづく
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.034s