[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
552(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/30(土)22:34 ID:4Ujjq2jv(17/17)調 AAS
>>531 補足
> 2. S は、空集合を始点として元を1つずつ追加していく数学的帰納法で証明可能な全属性を持つ。(カジミェシュ・クラトフスキ)
多分、公理的集合論と、素朴集合論の区別がついていない人が多いと思うが
公理的集合論で、”空集合を始点として元を1つずつ追加していく数学的帰納法で証明可能”
Zermeloの 可算多重シングルトン{・・・{}・・・}(>>549)
これは、”空集合を始点として元を1つずつ追加していく数学的帰納法で証明可能”ではない
無限公理の適用を必要とするのだ
無限集合のシングルトン、{C}(複素数)、{R}(実数)、{Q}(有理数)、{Z}(整数)、{N}(自然数)(>>550)
も同じ
559: 2019/12/01(日)08:19 ID:go6lPTYO(3/12)調 AAS
>>552
>空集合を始点として元を1つずつ追加していく
>数学的帰納法で証明可能な全属性を持つ。
上記の「元」はどんなものでもいいのであって、
元が無限集合だからダメだとかいう奴は
正真正銘の馬鹿w
563(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/01(日)09:03 ID:id6ENHqe(4/6)調 AAS
>>552 補足
下記順序数”0, 1, 2, 3, ............, ω, S(ω)(=ω+1)”を数直線に埋め込んでみよう
数直線の区間[0,2]で
n→1-(1/(1+n))=n/(1+n)
と変換すると
0→1-1/1=0
1→1-1/2=1/2
2→1-1/3=2/3
3→1-1/4=3/4
・
・
ω→1-1/(1+ω)=1
となって、”0, 1, 2, 3, ............, ω”
は、区間[0,1]に埋め込める
そこから、 S(ω)(=ω+1)は
ω+1→1+1/2となって、区間[1,2]の中央の点に対応する
そして、上記が繰返される
(>>552の)Zermeloの自然数構成では、可算多重シングルトン{・・・{}・・・}=ωであり
これは、区間[0,1]の点[1,1]に相当する
これで、可算多重シングルトン{・・・{}・・・}=ωのモデルが存在することが分かった
QED
https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0
順序数
(抜粋)
順序数の大小関係
順序数の並び方を次のように図示することができる:
0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............, ω + ω, S(ω + ω), S(S(ω + ω)), S(S(S(ω + ω))), ..............................
まず、0 が最小の順序数である。その後に S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3, ... と有限順序数(自然数)が通常の順序で並んでいる。
そして、すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である。ω の後にはまたその後続者たちが S(ω), S(S(ω)), S(S(S(ω))), ... と無限に続いていく。
その後、それらの最小上界(後に ω + ω と呼ばれる)が並び、その後続者たちが無限に続く。だがそれで終わりではない。
無限に続いた後には、必ずそれまでに並んだすべての順序数たちの最小上界が存在し、その後続者、そのまた後続者、... のように順序数の列は"永遠に"続いていくのである。
(引用終り)
以上
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.040s