[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
549(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/30(土)21:49 ID:4Ujjq2jv(14/17)調 AAS
>>536
>・Kuratowski, Kazimierz (1920), "Sur la notion d'ensemble fini" (PDF), Fundamenta Mathematicae, 1: 129?131
1920は、2019から見れば、ほぼ100年前
>>544 補足
>W.Sierpinski氏は彼の著書「Zermeloの公理とアンサンブルと分析の理論における彼の役割」1)有限集合の新しい定義を与えました。
Kuratowskiは、Sierpinski氏の著書「Zermeloの公理とアンサンブルと分析の理論における彼の役割」の有限集合の新しい定義を改良したわけです
1920年当時、(20世紀初頭までの)数学を公理的に扱えるようにするというのが、最先端の研究だった時代
「Zermeloの公理」が出ていたんだ
で、みなさんご存知のように、Zermeloはまずは、自然数N (可算無限)を、彼の公理から、構成した
(>>519ご参照)
で、当時既に知られていたようだが、自然数の構成は1通りではない
2019年では、ノイマンの構成が一番有名だが、
https://ja.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E6%95%B0 自然数 などをご参照
で、有限と無限の定義が、このような自然数の構成に依存するのは、まずいと思ったのだろう
まずは、Sierpinski氏が考えて、それをKuratowskiを改良した
だから、SierpinskiやKuratowskiは、無限集合のシングルトン、{C}(複素数)、{R}(実数)、{Q}(有理数)、{Z}(整数)、{N}(自然数)みないなのは、想定外
(まずは、素朴に無限と有限を分けましょうということだったろう)
また、1920年当時、無限集合のシングルトンを言い出したら、そもそも「有限とは?」「無限とは?」の議論が収束していないとき、混乱に輪を掛ける
(まあ、2019年の現代でも、可算多重シングルトン{・・・{}・・・}の存在を否定する数学おサルがいるくらいですし。まあ、もう1月で2020年になりますけどね(^^;)
また、2019年の現代でも、無限集合のシングルトン、{C}(複素数)、{R}(実数)、{Q}(有理数)、{Z}(整数)、{N}(自然数)などを数学で使う需要は少ない
もちろん、シングルトンなのだから、定義から、その集合の要素はただ1つ
但し、無限集合のシングルトンは、{C}(複素数)、{R}(実数)、{Q}(有理数)、{Z}(整数)、{N}(自然数)達は、その要素が、非可算無限集合であったり、あるいは可算無限集合
550(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/30(土)21:52 ID:4Ujjq2jv(15/17)調 AAS
>>549 補足
無限集合のシングルトン、{C}(複素数)、{R}(実数)、{Q}(有理数)、{Z}(整数)、{N}(自然数)
のような、要素に無限集合を含むが、要素の数では有限なる集合は
哲学的には”疑似有限”とでも呼ぶ方が適切なような気がする
552(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/11/30(土)22:34 ID:4Ujjq2jv(17/17)調 AAS
>>531 補足
> 2. S は、空集合を始点として元を1つずつ追加していく数学的帰納法で証明可能な全属性を持つ。(カジミェシュ・クラトフスキ)
多分、公理的集合論と、素朴集合論の区別がついていない人が多いと思うが
公理的集合論で、”空集合を始点として元を1つずつ追加していく数学的帰納法で証明可能”
Zermeloの 可算多重シングルトン{・・・{}・・・}(>>549)
これは、”空集合を始点として元を1つずつ追加していく数学的帰納法で証明可能”ではない
無限公理の適用を必要とするのだ
無限集合のシングルトン、{C}(複素数)、{R}(実数)、{Q}(有理数)、{Z}(整数)、{N}(自然数)(>>550)
も同じ
568(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/01(日)14:40 ID:id6ENHqe(6/6)調 AAS
>>563 補足
>下記順序数”0, 1, 2, 3, ............, ω, S(ω)(=ω+1)”を数直線に埋め込んでみよう
順序数”0, 1, 2, 3, ............, ω, S(ω)(=ω+1)”に対応する点列を数直線上に構成した
0,1/2,2/3,3/4,・・,1(←ω),1+1/2(←ω+1)
さて、これらの点列に合わせて、縦棒|を配置する
|,|,|,|,・・,|,|
上記を左右反転する
|,|,・・,|,|,|,|
間にΦを挟むと
|,|,・・,|,|,|,|Φ|,|,|,|,・・,|,|
左の|を{ に、右の|を} に 取り替える
{,{,・・,{,{,{,{Φ},},},},・・,},}
あーら不思議、可算無限ω+1重シングルトンのできあがり
中央のΦを抜けば、
{,{,・・,{,{,{,{ },},},},・・,},}
これぞ、天才Zermeloの考えた自然数構成(及び順序数ω)のシングルトン(>>549)なり〜!w(^^
正則性公理に反するだぁ〜?
そういうやつは、あまた腐っているよw
天才Zermeloをなめているのか?w(^^;
天才Zermeloがそんな間違いするわけない
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.033s