[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
52(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/05(土)15:17 ID:JrhjRl4x(22/46)調 AAS
>>42
補足します
閉区間[0,1]内の数列
0=1-1/1,1-1/2,1-1/3,・・,1-1/n,・・
を考えます。n→∞で、1-1/n→1に収束します。そして、[0,1]の点1は、集積点です
1)nが任意の自然数では、数列は、半開区間[0,1 )内です
2)nが自然数Nの全ての要素を渡りきって、ωに到達したときに、1-1/n→1に到達します
3)任意の1-1/nから点1の間に、無数の数列を構成する点があるということ
56(3): 2019/10/05(土)15:40 ID:o3FGv8uB(1/4)調 AAS
おっちゃんです。
>>52
>いえいえ
>極限ですよ
>
>有限の
>n:{Φ,{Φ},{Φ,{Φ}},・・}→{・・{Φ}・・}(一番右以外のΦを除くことを繰返す。{}はn重)
>
>ここで、n→∞とする
訂正して解釈して読んでも、極限は極限は存在せず、第n項がnの実数列 {n} は発散する。
>n→∞の極限を正統化するのが、無限公理でしょ(^^
自然数全体の集合Nや無限集合の存在性を保証するのが無限公理。
可算無限無限集合Nの存在性の保証はペアノの公理で済む。
417(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/14(月)10:28 ID:w6tqRMw5(3/8)調 AAS
>>415 補足
この話は、すでに>>42>>52にモデルを書いておいたが
1)閉区間[0,1]内の数列
0(=1-1/1),1-1/2,1-1/3,・・,1-1/n,・・,(n→∞)1(=1-1/∞)=ω
ができる
2)同様に
閉区間[1,2]内の数列
1(=2-1/1),2-1/2,2-1/3,・・,2-1/n,・・,(n→∞)2=(2-1/∞)=ω
ができる
3)上記1)2)を直結すると
閉区間[0,2]内の数列
0(=1-1/1),1-1/2,1-1/3,・・,1-1/n,・・,(n→∞)1(=1-1/∞)=ω=(=2-1/1),2-1/2,2-1/3,・・,2-1/n,・・,(n→∞)2=(2-1/∞)=ω + ω
ができる
4)要するに、例えば
奇数列 1,3,5,・・・
偶数列 2,4,6,・・・
この2つを直結すると
1,3,5,・・・、2,4,6,・・・になる
これが、3)の閉区間[0,2]内の数列と全単射になり、ω + ωの数列になる
5)で、「1,3,5,・・・、2」から、2→1の”無限降下列”がとれるが、最小元を持つので、正則性公理(=最小元を持たない)には反しない
QED
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.044s