[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
420
(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/14(月)10:45 ID:w6tqRMw5(5/8)調 AAS
>>419

つづき

https://ja.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E6%95%B0
自然数
(抜粋)
形式的な定義
自然数の公理
集合論において標準的となっている自然数の構成は以下の通りである。

空集合を 0 と定義する。
0:=Φ ={}
任意の集合 a の後者は a と {a} の合併集合として定義される。
suc (a):=a ∪ {a}
0 を含み後者関数について閉じている集合のひとつを M とする。
自然数は「後者関数について閉じていて、0 を含む M の部分集合の共通部分」として定義される。

以上の構成は、自然数を表すのに有用で便利そうな定義を選んだひとつの結果であり、他にも自然数の定義は無限にできる。これはペアノの公理を満たす後者関数 suc(a) と最小値の定義が無限に選べるからである。
例えば、0 := {}, suc(a) := {a} と定義したならば、
0 := {}
1 := {0} = {{}}
2 := {1} = {{{}}}
3 := {2} = {{{{}}}}
と非常に単純な自然数になる。
(引用終り)
以上
431: 2019/10/14(月)12:46 ID:CsedbQse(1)調 AAS
>>420
例えば 3 := {2} = {{{{}}}} からは、
{{{{}}}}∋{{{}}}∋{{}}∋{}
と辿ることができるが(∈有限降下列)、
{{…}} からは、
{{…}}∋{{…}}∋…
と、有限回で{}へ辿り着くことはない(∈無限降下列)。
正則性公理は∈無限降下列の存在を禁じているので {{…}} はZF上の集合ですらない。

一方
{{},{{}},{{{}}},{{{{}}}},…}
の任意の元は上記前者タイプなので、∈無限降下列は存在しない。
432: 2019/10/15(火)02:38 ID:l79/50AZ(1)調 AAS
>>420
例えば、0 := {}, suc(a) := {a} と定義したならば、
0 := {}
1 := {0} = {{}}
2 := {1} = {{{}}}
3 := {2} = {{{{}}}}
と非常に単純な自然数になる。
(引用終り)

うん、どこにも ω={{…}} になるとは書かれてないねw
794
(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/15(日)15:20 ID:BvQtIPz4(5/5)調 AAS
>>783 補足

(>>420より)
<Zermelo構成>
https://ja.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E6%95%B0
自然数
(抜粋)
形式的な定義
自然数の公理
集合論において標準的となっている自然数の構成は以下の通りである。

空集合を 0 と定義する。
0:=Φ ={}
例えば、0 := {}, suc(a) := {a} と定義したならば、
0 := {}
1 := {0} = {{}}
2 := {1} = {{{}}}
3 := {2} = {{{{}}}}
と非常に単純な自然数になる。
(引用終り)

(>>783より)
<Zermelo構成>
0,1,2,3,・・・たちを集合として見たら
(可算無限長の)上昇列:0∈1∈2∈3∈4∈…
が構成される

上昇列は、正則性公理には反しない(>>783
シングルトンの(可算無限長の)上昇列は、正則性公理には反しない

だから、ωに相当するシングルトンの存在は、正則性公理には反しない
ωに相当するシングルトンの存在を否定したければ、別の理論を持ってこい w!!w (^^:
(そんな理論はありませんww)
QED
(^^
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.034s