[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
293
(4): 2019/10/12(土)14:01 ID:Ty9mG3gK(3/4)調 AAS
ではもう少し詳しく書きます。
仮定は
Ω=x1∋x2∋‥‥∋xm
なる形の列の長さに上限がないですね。
この仮定の元に自然数mに対して
X[m]={(x1,x2,‥,xm) | x1=Ω, x[i]∋x[i+1]}
がいずれも空集合にならない事は理解できますか?

条件を満たすいくらでも長いものがある
⇒条件を満たす任意の長さのものがある

です。
295
(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/12(土)15:04 ID:0oc9Ztsl(18/28)調 AAS
>>293
(引用開始)
仮定は
Ω=x1∋x2∋‥‥∋xm
なる形の列の長さに上限がないですね。
(引用終り)

その記法は、混乱の元と思います
もし、有限長さmならば
Ω=xm∋xm-1∋‥‥∋x2∋x1
と番号を付け直すべきですよ
そうしないと、大変混乱するでしょうね
正則性公理は、「空でない集合 x には ∈ に関して極小となる元 z ∈ x があること」ですからね
極小となる元を、1番にすべきですね

(参考)
http://www.math.tsukuba.ac.jp/~tsuboi/
坪井明人
http://www.math.tsukuba.ac.jp/~tsuboi/
学群関係
http://www.math.tsukuba.ac.jp/~tsuboi/und/14logic3.pdf
数理論理学II 坪井明人 筑波大
1.1.10 基礎の公理(正則性公理)
x ≠ Φ → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y)).
空でない集合 x には ∈ に関して極小となる元 z ∈ x があること,
を直観的には意味している.

https://ja.wikipedia.org/wiki/%E6%AD%A3%E5%89%87%E6%80%A7%E5%85%AC%E7%90%86
正則性公理
(抜粋)
以下の4つの主張はいずれも同値であり、どれを正則性の公理として採用しても差し支えない。
・任意の空でない集合xに対して、∃y∈x,x∩y=0
・∀xについて、∈がx上well-founded
・∀xについて、無限下降列である x∋x1∋x2∋・・・ は存在しない。
(引用終り)
296
(1): 2019/10/12(土)15:05 ID:Ty9mG3gK(4/4)調 AAS
>>295
好きに番号はつけて下さい。
>>293の各X[m]がいずれも空集合にならない事は理解できますか?
298
(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/12(土)15:38 ID:0oc9Ztsl(20/28)調 AAS
>>296
>好きに番号はつけて下さい。

はい
では、>>295の正則性公理の表記に合わせて、
∋関係の順序列の最小要素から順に、0または1を、
そして可付番なら、その後は自然数の順で番号付けをすることを
要求します

>>>293の各X[m]がいずれも空集合にならない事は理解できますか?

各X[m]の定義を、上記要求に合わせ
X[m]={(x1,x2,‥,xm) | x1=Ω, x[i]∋x[i+1]}
 ↓
X[m]={(x1,x2,‥,xm) | x1=Ω, x[i+1]∋x[i]}
と書き直して良いですよね?

正則性公理を前提として、m>=2でX[m]は空集合ではないですね
m=1で、x1=Φとしても、X[1]は、空集合にはならないですね
313
(4): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/12(土)22:33 ID:0oc9Ztsl(27/28)調 AAS
>>293
(引用開始)
Ω=x1∋x2∋‥‥∋xm
X[m]={(x1,x2,‥,xm) | x1=Ω, x[i]∋x[i+1]}
(引用終り)


xmをいくらでも小さく取れるということですか?
それこそ、正則性公理で禁止されていることですよ

つまり、ZFCで空集合Φに、ノイマン型で後者関数を使って、自然数を作る
最小値(集合) 0=Φで、これが最小値(集合)
ノイマン型で
0∈1∈2∈・・∈n・・
となって
最小値(集合) 0=Φより、小さい値(集合)は存在しません!

一方、大きな値(集合)は、可能です
無限大も可能です(もちろんアレフ1もアレフ2も可能です)

なお、正則性公理の規定によって、∈関係において、∈は等号の意味は含みません
つまり、「X∈X」は禁止されていますので、「・・X∈X∈X∈X」という等号型の無限ループは許されていません

さて、そろそろ宜しいでしょうか?

私は、(>>257)『おっさんずラブ』ならぬ、おっさんずゼミ(゜ロ゜;
(どこのだれとも知れぬ”名無しさん”=おっさんたちと、ゼミやる気ないです(^^;
 大学教員だとかいうなら、話は別ですがね)

そんな趣味ないので、あしからずご了承ください w(^^;
(たまに冷やかしで書くかも知れませんが、そのときはよろしく)
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.033s