[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
201(1): 第六天魔王 ◆y7fKJ8VsjM 2019/10/07(月)19:12 ID:rpPbPz0q(4/7)調 AAS
>>193
>1)ツェルメロ構成での任意aの後者関数;
> suc(a) := {a}による構成は、正則性公理に反しない
> たとえ、それで無限上昇列が出来ても、ということは認めますか? Y/N
Y
>2)ツェルメロ構成での任意aの後者関数;suc(a) := {a}による構成で、
> 無限公理を適用して、自然数nをすべて含む無限集合が出来たとき、
> それはいわゆる自然数Nよりも、余計な元、
> 即ち、超限順序数に属するべき(有限でない)元が
> 生成され、含まれていることに同意しますか? Y/N
Y
>>195
>では、この超限順序数に属するべき(有限でない)元とは、何なのでしょうか?
馬鹿が考えるような{…{}…}ではないけどな
>ツェルメロ構成でできる集合は、任意aの後者関数;suc(a) := {a}以外は無いですね
相変わらず底抜けの馬鹿だな、貴様はwwwwwww
{}∈X∧(∀x∈X⇒{x}∈X)
(Xは空集合を要素とし、xがXの要素なら{x}もXの要素である)
という条件を満たすXについて
「yがXの要素なら、yは空集合か
y={x}で、Xの要素となるxが存在する」
∀y.((y∈X⇒y={}∨∃x.({x}=y∧x∈X))
とか思ってるだろ?w
そこが馬鹿だというんだよwww
実際には
「Xの空集合でないyで、
Xのいかなる要素xについても
{x}=yとならないものが存在する」
∃y.(y∈X∧¬(y={})∧∀x.(x∈X⇒¬({x}=y))
が成立しても矛盾はない
つまり
>超限順序数に属するべき(有限でない)元、それは、消去法で、
>超限回の空集合Φに対する後者関数による超限多重集合 {・・{Φ}・・}(ω+アルファ回{}多重)
>でなければならない
なんてことはいえない
「縁なき衆生は度し難し」
>それはお認めになるんですよね?
認めねぇよ この大馬鹿者めwwwwwww
202: 第六天魔王 ◆y7fKJ8VsjM 2019/10/07(月)19:21 ID:rpPbPz0q(5/7)調 AAS
>>201でいってるのは、
{}∈X∧(∀x∈X⇒{x}∈X)
を満たす集合が、
空集合でも単一要素の集合でもない集合を
要素としても全然問題ない、ということ
例えばa={{{}},{{{}}}}を要素としてもいい
但し、もしaを要素とするなら{a}も{{a}}も要素とせねばならない
そういうこと
では、もし
{}∈X∧(∀x∈X⇒{x}∈X) かつ
∀y.((y∈X⇒y={}∨∃x.({x}=y∧x∈X))
だったら、Xは、馬鹿のいう
{・・{Φ}・・} (無限重)
を要素にもつのか?
しかし、正則性公理の元ではそれはありそうもない
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.033s