[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
574(4): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/03(火)00:04 ID:BRqy0upZ(1/4)調 AAS
>>568 補足
https://ja.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E6%95%B0
自然数
より
Zermelo 構成(0 := {}, suc(a) := {a} と定義)
0 := {}
1 := {0} = {{}}
2 := {1} = {{{}}}
3 := {2} = {{{{}}}}
4 := {3} = {{{{{}}}}}
・
・
n := {n-1} = {・・{{}}・・}(0 := {}の外がn重)
・
ω := {・・・{{}}・・・} (0 := {}の外がω重)
一方、ノイマン 構成(0 := {}, suc(a) := a∪{a} と定義)
0 := {}
1 := suc(0) = {0} = {{}}
2 := suc(1) = {0, 1} = {0, {0}} = {{}, {{}}}
3 := suc(2) = {0, 1, 2} = {0, {0}, {0, {0}}} = {{}, {{}}, {{}, {{}}}}
4 := suc(3) = {0, 1, 2, 3} = {0, {0}, {0, {0}},{0, {0}, {0, {0}}}} = {{}, {{}}, {{}, {{}}},{{}, {{}}, {{}, {{}}}}}
・
・
n := suc(n-1) = {0, 1, 2, 3,・・,n-1} = {{}, {{}}, {{}, {{}}},・・,{{}, {{}},・・, {{}}・・}}
・
・
ω := {0, 1, 2, 3,・・,n・・・} = {{}, {{}}, {{}, {{}}},・・・,{{}, {{}},・・・, {{}}・・・}}
さてここで
ノイマン 構成から、一番右の要素のみを残して、他の元を抜くと、Zermelo 構成になる
2 := suc(1) = {0, 1} = {0, {0}} = {{}, {{}}}
↓(0,を抜く)
2 := {{{}}} (Zermelo 構成)
3 := suc(2) = {0, 1, 2} = {0, {0}, {0, {0}}} = {{}, {{}}, {{}, {{}}}}
↓(0, 1,を抜く)
3 := {{{{}}}} (Zermelo 構成)
4 := suc(3) = {0, 1, 2, 3} = {0, {0}, {0, {0}},{0, {0}, {0, {0}}}} = {{}, {{}}, {{}, {{}}},{{}, {{}}, {{}, {{}}}}}
↓(0, 1, 2, 3,を抜く)
4 := {{{{{}}}}} (Zermelo 構成)
・
・
n := suc(n-1) = {0, 1, 2, 3,・・,n-1} = {{}, {{}}, {{}, {{}}},・・,{{}, {{}},・・, {{}・・}
↓(0, 1, 2, 3,・・, n-1,を抜く)
n := {・・{{}}・・} (Zermelo 構成)
・
・
ω := {0, 1, 2, 3,・・,n・・・} = {{}, {{}}, {{}, {{}}},・・・,{{}, {{}},・・・, {{}}・・・}}
↓(0, 1, 2, 3,・・, n,・・を抜く)
ω := {・・・{{}}・・・} (0 := {}の外がω重)(Zermelo 構成)
つづく
575(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/03(火)00:09 ID:BRqy0upZ(2/4)調 AAS
>>574
つづき
ノイマン 構成から、Zermelo 構成を抽出する集合の操作は
分出公理を使えば可
https://ja.wikipedia.org/wiki/%E5%85%AC%E7%90%86%E7%9A%84%E9%9B%86%E5%90%88%E8%AB%96
公理的集合論
(抜粋)
分出公理
置換公理はフレンケルによって次の分出公理の代わりにおかれたものである(1922年)。分出公理は上に述べた ZF の公理から示すことができる。
この公理は、論理式 ψ をパラメータとする公理図式である。
論理式 ψ を決めたとき、X に対して分出公理が存在を主張する集合はただ一つであることが外延性の公理から言えるので、これを {\displaystyle \{x\in X\mid \psi (x)\}}\{x\in X\mid \psi(x)\} で表す。
{\displaystyle \{x\in X\mid x\in Y\}}\{x\in X\mid x\in Y\} を {\displaystyle X\cap Y}X\cap Y で表す。
576(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/03(火)00:15 ID:BRqy0upZ(3/4)調 AAS
>>575 補足
なお、順序数ωの数直線におけるモデルは、
>>563で示した。なお>>568もご参照
以上
正則性公理?
Zermelo 構成がだめだと?w
だったら、ノイマン 構成もダメになるぞ
それは矛盾であるww(^^;
585(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/03(火)21:00 ID:BRqy0upZ(4/4)調 AAS
>>583-584
おいおい
おまいら、まだ時枝記事不成立が分かっていないのかい?w(^^
やれやれだなww(^^;
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.052s