[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
973(3): 2019/10/18(金)11:21 ID:HOFZxgY0(1)調 AAS
>>969
定かではありませんが、
5 次拡大がガロア群が可解なら二項拡大
みたいな事書いてました。
でそれは少なくとも下の体がQ(exp(2πi/5))を含む場合でしょと突っ込み入れてました。
実際反礼があるのかと考えてみると中々ないのがわかります。
まずζ=exp(2πi/5), K=Q(ζ), f(x)をQ上の規約多項式で今はこれがK上でも規約まで仮定しておきます。
この上でLをK上の最小分解体, G=Gal(L/K)とし、これが可解とします。
最小性の仮定からGは唯一の極小正規部分群Nを持ち、それが5次巡回群までは自明なのでG/N=Qとおきます。
Qの位数は24の約数で可解なので、少し議論すると2群かまたは位数3の正規部分群を持ちます。
ここで後者とするとGが元々位数15の正規部分群を持ちますが、それはC3×C5しかあり得ず、そのシロー3群は特性部分群なので、Gが位数3の正規部分群を持つことになり、Lの最小性に反します。
以上によりG=N⋊Q、#Q=1,2,4,8まで来ます。
ここでQのNへの自然な作用が自明な元全体をKとすると#Kは4以下でKが非自明なら非自明なセンターを持ち、それはGのセンターになってしまうのでGの最小性に反します。
よってQはe,c2,c4,c2×c2です。
以上の議論を踏まえてQ上のある5次規約多項式がK上でも規約の場合、その最小分解体のガロア群は位数が80の約数で位数5の巡回群を唯一の正規部分群として持つ事が言えます。
さらに絞っていくと位数は5か20しかない事も言えます。
20の場合というのはあるa∈KでLがその最小分解体となるケースです。
この時x^5-N[L/K](a)はLで分解するのでこれがQで規約なら主張は成立です。
aはKの整数としてよく、それが整数環の非可逆元ならやはり容易です。
そうでない場合が残りケース。
実例を調べてみるとこの場合は必ずアーベル拡大になってしまいQ=eになるようです。
もっか調べ中。
誰かが本にそれっぽい事書いてたと言ってたので正しいのは正しいのでしょう。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.044s