[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む42 [無断転載禁止]©2ch.net (795レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
689: 2017/09/30(土)11:47 ID:zSN7EBXb(1/5)調 AAS
>>645
おっちゃんです。
>おっちゃんのレスは明晰さに欠ける(笑
>
>何度でもいうが、
>1/2+1/4+1/8+……は1にはならないのである(笑
>1/2+1/4+1/8+……の極限値は1だが、
>極限値とは、限りなく近づくが到達しない値のことである(笑
第n項が a_n=Σ_{k=1,…,n}(1/2)^k なるような数列 {a_n} を考えれば、
ε-N 論法によって正当化される。任意に正の実数εを取ったとき、
εに対して或る正整数 N(ε) が定まって n≧N(ε) のとき |a_n−1|<ε となる。
>1/2+1/4+1/8+……の極限値は1
ということについては、lim_{n→+∞}a_n=1 つまり Σ_{k=1,…,+∞}(1/2)^k=1 を指し、
この直前の式が成り立つことが 1/2+1/4+1/8+…=1 が成り立つことに当たる。
これは ε-N 論法の定義に従った書き方でもある。
>極限値とは、限りなく近づくが到達しない値のことである(笑
については、n≧N(ε) なる正整数nを任意に取ると、|a_n−1|<ε となって、
このとき選んだ正の実数εとεの後に選んだ正整数 n(≧N(ε) ) はどっちも有限の実数なので
a_n は a_n=Σ_{k=1,…,n}(1/2)^k の形の式で表される有限小数になる。そして 0<|a_n−1|<ε が成り立つ。
だから結局、上のように数列 {a_n} を構成して、n≧N(ε) なる正整数nを任意に取り
そのついでに有限小数 a_n=Σ_{k=1,…,n}(1/2)^k も取ったことを表している文に過ぎない。
691: 2017/09/30(土)12:00 ID:zSN7EBXb(2/5)調 AAS
>>645
>だから1/2+1/4+1/8+……=1と書いてはいけないのである。
>実際、われわれが高校の頃は、こんな式は見たことがない。
>もし正確に書くとすれば、
>1/2+1/4+1/8+……→1と書くか、もしくは
>lim[1/2+1/4+1/8+……]=1と書くべきである。
>なぜならlimとは極限値を表わす記号だから。
これは、lim_{n→+∞}a_n=1 つまり Σ_{k=1,…,+∞}(1/2)^k=1 を
lim_{n→+∞}( lim_{n→+∞}a_n )=lim_{{n→+∞}( Σ_{k=1,…,+∞}(1/2)^k )=1
というような式にして複雑に書き直しているだけで、意味がない。
694
(1): 2017/09/30(土)13:08 ID:zSN7EBXb(3/5)調 AAS
>>692
>おっちゃんに至っては一体何が言いたいのか不明だ(笑
高校数学の無限や極限についての内容は大学一年レベルの数学の観点からも正当化出来て、
単にその高校までの無限や極限の取り扱いに反したお前さんの主張が間違っているだけ
ということ。
717
(1): 2017/09/30(土)18:03 ID:zSN7EBXb(4/5)調 AAS
>>715
>ケーキを半分に分割するという作業を続ければ、
>いつかケーキはゼロになるかどうか、という問題であり、
>数学的に説明すれば、
>1/2^nはゼロになるかどうか、という問題である。
>
>そしてnにどんな自然数を代入しようとゼロにはならないから、
>ケーキはゼロにはならないのである。
>
>ケーキはゼロにはならないから
>1/2+1/4+1/8+……は1にはならないのである。
自然数は無限個あって最大の自然数はないので、代数的に考えるのは間違い。
「自然数を代入云々」では解決出来ない。そもそも、無限級数の部分和は有限和で、
「1/2+1/4+1/8+…」は「1/2+1/4+1/8+…+(1/2)^n」というような式で書く。
極限値や無限級数のような言葉や「1/2+1/4+1/8+…」という極限値1に等しい式を用いて
問題を書いているのに、代入云々なんて類の問題のことなんて伝わる訳ないだろ。
718: 2017/09/30(土)18:05 ID:zSN7EBXb(5/5)調 AAS
じゃ、おっちゃん寝る。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.051s