[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む42 [無断転載禁止]©2ch.net (795レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
120(1): 2017/09/18(月)00:53 ID:WP9yXypF(1/46)調 AAS
>>114の引用がなんだっての?(笑)
121(1): 2017/09/18(月)01:02 ID:WP9yXypF(2/46)調 AAS
>>114の引用がなんだっての?(笑)
こいつは何を言ったつもりなの?(笑)
> 開区間(0,1)の有理数の集合は可算無限だが、通常の距離を入れて整列させると、先頭の有理数に番号を付けることはできないと言うが如しだ
> しかし、厳然と、開区間(0,1)の有理数の集合は、存在する
何が如しなの?
存在するから何なの?
あほ?
153(1): 2017/09/18(月)10:38 ID:WP9yXypF(3/46)調 AAS
>>142
宣伝ありがとう。
amazonには残り1冊となってるな。なんでだ?
これじゃあ客のニーズに耐えられんぞ。
> 限りがない、ということは、無限個ある、ということではない(笑
> 無限にあるが、無限個あるわけではない(笑
> 無限個あるが、無限個あるわけではない(笑
AならばA(A⇒A)が必ずしも成り立たない、ってわけだ。
これが宗教でも文学でも哲学でもなく数学だっていうなら逆にすごいよ。
お前はたしかに新しい数学を作り出してるよ。自信をもって増刷しなさい。
256(1): 2017/09/18(月)18:29 ID:WP9yXypF(4/46)調 AAS
>>255
> 否、間違ってるぞサルw
> di>dj(not(i=j))
> こそが確率事象であり、その集まりが確率空間w
へえ、で確率測度はどうなってるんすか?笑
258(2): 2017/09/18(月)18:31 ID:WP9yXypF(5/46)調 AAS
まさかP(d1>d2)=P(d1<d1)とか言い出すんじゃないでしょうねえ?(爆
それは自明なんですか?じゃあ証明してください。
あ、その前にそのPは測度ですか?(笑
あなたは油断すると測度論でない無定義の確率を持ち出しますからねぇwww
260(1): 2017/09/18(月)18:32 ID:WP9yXypF(6/46)調 AAS
>>257
Pが可測であることを証明してもらえます?w
そこが肝心なんですけどw
記事を読めば分かることですよ。
あなたの直感的確率論を聞いてるんじゃないんですよ。
261(1): 2017/09/18(月)18:33 ID:WP9yXypF(7/46)調 AAS
>>259
> 事象がn個なら、確率はそれぞれ1/nづつ
それは非自明です。証明してください。
そもそも確率ってなんですか?確率測度なら可測関数になっていることを示してください。
そこが肝心なんですけどw
記事を読めば分かることですよ。
あなたの直感的確率論を聞いてるんじゃないんですよ。
263(1): 2017/09/18(月)18:36 ID:WP9yXypF(8/46)調 AAS
>>262
> P(サイコロの目=1)が測度なら、測度だろう
意味不明ですね。あなたの問題設定にサイコロなんて出てきませんから。
> P(d1>d2)=P(d1<d2)な
>
> >それは自明なんですか?
>
> 自明だな
へえ。じゃあdが可測関数であることを示してください。
どうぞ!
267(1): 2017/09/18(月)18:40 ID:WP9yXypF(9/46)調 AAS
自明で済ますのか?ww
それは無限集合には有限個しかないのは自明だと言ってるどこかの素人と一緒だな。
ところでこのレスに見覚えあるか?
定義域と聞いてピンとこないようだからな。
もっと引用してやろうか?思い出せなければ。
2chスレ:math
--------------
問題1
写像 F:{ 1, 2 } → N を F(1)=1, F(2)=2 で定義する。
このとき、F(3)=F(4) が成り立つと言えるか?
解答
3と4は写像Fの定義域に入ってない。よって、F(3)とF(4)は定義されておらず、
"F(3)" とか "F(4)" という記号列を使うこと自体が間違っている。
もちろん、F(3)=F(4) は成り立たない。というか、F(3)=F(4) の
成立・不成立を問うこと自体がナンセンスである。
問題2
件の測度空間において、μ_r×μ_r'(H1)=μ_r×μ_r'(H2) は成り立つと言えるか?
解答
H1とH2は非可測なので、写像μ_r×μ_r'の定義域に入っていない。
よって、μ_r×μ_r'(H1)とμ_r×μ_r'(H2)は定義されておらず、
"μ_r×μ_r'(H1)" とか "μ_r×μ_r'(H2)" という記号列を使うこと自体が間違っている。
もちろん、μ_r×μ_r'(H1)=μ_r×μ_r'(H2) は成り立たない。というか、
μ_r×μ_r'(H1)=μ_r×μ_r'(H2) の成立・不成立を問うこと自体がナンセンスである。
270(2): 2017/09/18(月)18:44 ID:WP9yXypF(10/46)調 AAS
>>268
> 意味は明確ですね。サイコロの目に関する事象は
> サイコロの目が1から6のいずれかになる6個だけですからw
お前の問題設定ではサイコロを振らなくても確率1/100だろうが(笑
P(d1<d2)=P(d2>d1)が成り立つんだろ?
だったらサイコロを振らずに1列目を選び続けても確率1/100だろうが(笑
支離滅裂なんだよお前。
> >じゃあdが可測関数であることを示してください。
>
> 必要ありません。diが自然数として存在するだけで十分ですw
dが可測関数でないのにどうやってP(d1<d2)を計算するんすか?笑
もしかしてP(d1<d2)=P(d2>d1)は俺様流確率論の公理かなにかですか?笑
そんなわけないだろアホウw
はやく証明しろよ。みんな待ってんだよ。お前の証明をw
271: 2017/09/18(月)18:45 ID:WP9yXypF(11/46)調 AAS
>>269
> 「決定番号の測度に基づく必要がある」というのは
> 真っ赤なウソだとわかったから今更顧みないよw
はい!!お前の決まり文句でました!!!
「 測 度 に 基 づ く 必 要 な し 」
やーーーっぱり測度論ないんじゃん!笑
じゃあお前の"確率"ってなあに??
だーれもしらねえよお前の"確率"なんて。
さっさと定義してみろ。
272: 2017/09/18(月)18:48 ID:WP9yXypF(12/46)調 AAS
>>258
> あ、その前にそのPは測度ですか?(笑
> あなたは油断すると測度論でない無定義の確率を持ち出しますからねぇwww
今回も出てきたよ無定義の"確率"が。
俺の予言したとおりじゃねえか。
いままでの議論を返せや。
スレ主にも謝れww
お前しか知らない俺流確率論で他人様を罵倒してたのか貴様は!
276(1): 2017/09/18(月)18:51 ID:WP9yXypF(13/46)調 AAS
>>173
> つまり100列数列をとって、1列目をとっても1/100、100列目をとっても1/100だが?
> 違うとおもってるのかね?じゃ、それぞれいくつになるのかね?
> 1列目は0で、100列目は1かね?
お前しか知らない俺流確率論で確率を語られても 無 意 味
そのP(d1<d2)=P(d1>d2)って確率測度じゃないんでしょ?
俺流確率だろ?しらねえよそんなもん(笑
277(2): 2017/09/18(月)18:53 ID:WP9yXypF(14/46)調 AAS
>>275
> 事象の個数と、等確率の前提からw
その確率ってなんですか?笑
確率測度じゃないんでしょ!?
確率測度ならばdが可測関数であることを示してください。
俺流確率ならば確率を定義してください。
だーれもしりませんから。君のオレ流確率論なんて笑
281: 2017/09/18(月)18:56 ID:WP9yXypF(15/46)調 AAS
>>274さん、あなたが正しい。
必ず成り立つのは
>>168
> 1) どの列もMaxになる確率は1/100
ではなく
> 2) Maxの列を選ぶ確率はサイコロで決まる確率1/100
である。
これも考えてみてください。
ディーラーが100列のR^Nを独立同分布で選んだとする。
このときP(d1>d2)=P(d1<d2)は言えると思いますか?
283(1): 2017/09/18(月)18:59 ID:WP9yXypF(16/46)調 AAS
>>280
> >そのP(d1<d2)=P(d1>d2)って確率測度じゃないんでしょ?
>
> 確率測度ですよ
> じゃないと思いたがるお前が馬鹿w
お前何枚ベロを持ってるんだよw
じゃあdが可測であることを示してください。
でないとそのPなる測度、d1<d2なる事象で定義されてない恐れがありますから。
あ、よかったらもう一度定義域でポカした過去を思い返してください。
2chスレ:math
285(1): 2017/09/18(月)19:01 ID:WP9yXypF(17/46)調 AAS
これがお前のポカな。
2chスレ:math
-------
dは時枝記事における決定番号
d:R^N→N
Ω≡(R^N×R^N)を用いて確率空間(Ω,F,μ)を構成する
直積測度μ≡μ_r×μ_r'を考える
[1] 1番目の項が最大となる確率はいくつか?
d(r1)≧d(r2)となるR^N×R^Nの部分集合全体をH1として
H1∈Fならばμ_r×μ_r'(H1)が求める確率である
[2] 2番目の項が最大となる確率はいくつか?
[1]と同様に考えると
d(r2)≧d(r1)となるR^N×R^Nの部分集合全体をH2として
H2∈Fならばμ_r×μ_r'(H2)が求める確率である
私の主張は
μ_r×μ_r'(H1)=μ_r×μ_r'(H2)
μ_r×μ_r'(H1)+μ_r×μ_r'(H2)=1
の2点に尽きる
君の意見は
「dが非可測だからfも非可測、したがって
μ_r×μ_r'(H1)=μ_r×μ_r'(H2) はいえない」
だろ?
私の反論は
・(r1,r2)を(r2,r1)と交換してもμ_r×μ_r'は変化しない
・上記交換によりH1はH2、H2はH1に移る
したがってμ_r×μ_r'(H1)=μ_r×μ_r'(H2)
287(2): 2017/09/18(月)19:03 ID:WP9yXypF(18/46)調 AAS
これがお前のポカに対する有志の突っ込みの抜粋な:
2chスレ:math
----------
問題2
件の測度空間において、μ_r×μ_r'(H1)=μ_r×μ_r'(H2) は成り立つと言えるか?
解答
H1とH2は非可測なので、写像μ_r×μ_r'の定義域に入っていない。
よって、μ_r×μ_r'(H1)とμ_r×μ_r'(H2)は定義されておらず、
"μ_r×μ_r'(H1)" とか "μ_r×μ_r'(H2)" という記号列を使うこと自体が間違っている。
もちろん、μ_r×μ_r'(H1)=μ_r×μ_r'(H2) は成り立たない。というか、
μ_r×μ_r'(H1)=μ_r×μ_r'(H2) の成立・不成立を問うこと自体がナンセンスである。
288(1): 2017/09/18(月)19:04 ID:WP9yXypF(19/46)調 AAS
>>286
> dの可測性は必要ない
それ、オレ流確率論なw
「定義域なんてオレ流ではカンケーねえ!」
って言うのはアンマリだぜw
292(1): 2017/09/18(月)19:08 ID:WP9yXypF(20/46)調 AAS
>>289
> 間違ってることは間違ってると断固はねつける必要がある
同じことをスレ主が言ってたぞ。
他人にモノを説明できないときに言う言葉だ。
> ということで決定番号の分布d(s)とか忘れなさい 意味ないからw
君の1/100はオレ流確率論であり、無定義である。
だれもお前には納得しないだろう。
唯我独尊、お前だけがお前の結論に浸っていればよろしい。
294(1): 2017/09/18(月)19:09 ID:WP9yXypF(21/46)調 AAS
>>287
> いいや、「決定番号の分布」に固執するサルの貴様のほうが俺流確率論w
>
> 必要ないことは考えないのが数学のセンス サルの貴様にはセンスがないw
関数の定義域を考えないのが数学のセンスとは恐れ入る。
296(3): 2017/09/18(月)19:12 ID:WP9yXypF(22/46)調 AAS
ID:KkC8TkeYの定義域を無視するオレ流確率論:
2chスレ:math
> 私の反論は
> ・(r1,r2)を(r2,r1)と交換してもμ_r×μ_r'は変化しない
> ・上記交換によりH1はH2、H2はH1に移る
> したがってμ_r×μ_r'(H1)=μ_r×μ_r'(H2)
関数の定義域を無視しない確率論:
2chスレ:math
> H1とH2は非可測なので、写像μ_r×μ_r'の定義域に入っていない。
> よって、μ_r×μ_r'(H1)とμ_r×μ_r'(H2)は定義されておらず、
> "μ_r×μ_r'(H1)" とか "μ_r×μ_r'(H2)" という記号列を使うこと自体が間違っている。
> もちろん、μ_r×μ_r'(H1)=μ_r×μ_r'(H2) は成り立たない。というか、
> μ_r×μ_r'(H1)=μ_r×μ_r'(H2) の成立・不成立を問うこと自体がナンセンスである。
302(1): 2017/09/18(月)19:15 ID:WP9yXypF(23/46)調 AAS
>>297
> お前こそなぜdの可測性に基づく必要があるのか説明できるか?
>>296に誰の目にも分かるようにハッキリと書いてあるんだがw
> 等確率であることは自明だから、
だから証明しろよ。オレ流でなく、測度論でたのむわw
304(1): 2017/09/18(月)19:17 ID:WP9yXypF(24/46)調 AAS
>>301
> 無視する必要があるのは関数の定義域ではなく関数そのものw
えええええ??
dって関数でもないの?(爆
dは固定値じゃないんだろ?
じゃあなんてdは変化するの?
事象s∈R^Nの関数じゃないなら、なんでdが変化するの?
まじで教えてくれよ、オレ流クン。
307(1): 2017/09/18(月)19:24 ID:WP9yXypF(25/46)調 AAS
>>306
> そもそもdの値そのものの確率は求めてないがw
へえ。P(d1<d2)は求まるわけだ。
それってお前、昔に証明失敗したじゃんw
309(1): 2017/09/18(月)19:26 ID:WP9yXypF(26/46)調 AAS
>>306
> >dって関数でもないの?(爆
> そもそもdの値そのものの確率は求めてないがw
答えになってないな。
dって関数じゃないんだろ?
じゃあなんなんだよ。
> つまり順序関係だけしか見てない
じゃあ順序関係は固定なのか?違うだろ?
変わるなら関数だよなあ。何によって変わるんだ?R^Nの直積だろ?
じゃあR^Nの直積から定まる順序関係は可測なのか?
答えろ。
312(2): 2017/09/18(月)19:30 ID:WP9yXypF(27/46)調 AAS
>>310
> 「決定番号の分布」に基づこうとしたのが間違いだった
> そんな必要はなかった 貴様の「測度論」の考えが間違ってるんだよw
言い逃れ乙w
おまえの確率は測度に基づいてないんだろ?w
定義すらしてないだろ?お前のオレ流確率論。
じゃあもうゲームセット。お前は唯我独尊の哀れな素人と同じ。
人(1/100)をトゲ(確率)と読んでる哀れな素人と同じ。
定義のないところに数学なし。さようなら。
314(1): 2017/09/18(月)19:32 ID:WP9yXypF(28/46)調 AAS
>>311
> 要は「順序関係だけなら有限個の事象に分けられる」ということ
それはただ注目する事象が有限個に分けられるというだけ。
そんなの誰でも分かってるw
その個々の事象の測度が求まるんですか?w
オレ流確率で求まるのは分かったよw
測度論的確率で求まるんですか?
求まるなら可測性を示しなさいよ。
定義域を無視しちゃダメなんですよ数学ではねw
316: 2017/09/18(月)19:39 ID:WP9yXypF(29/46)調 AAS
>>315
> 測度に基づいていないのではなく
> 「決定番号の分布」に基づいていない
お前は絶対に自分の言っている重大さが分かってないw
順序ならば可測なのか?w
それはR^Nの直積の関数だよなあ?違うか?
各di:R^N→Nが非可測なのにdiの順序関係が可測になるのか?
であるならば、証 明 せ よ
これが可測であると主張するのはお前だけであり、常識でも自明でもない。
証 明 せ よ
319(1): 2017/09/18(月)19:46 ID:WP9yXypF(30/46)調 AAS
>>318
> ・事象をn個に分けた
> ・数列の選び方が同じなら、各事象は等確率
> これだけで、各事象の確率は1/n以下だと分る
へえじゃあ証明しろよ。
n=2、各R^Nは独立同分布として、P(d1<d2)=P(d1>d2)が同確率であることを測度論の範疇で示せ。
この必ず落ちる橋をお前が渡るのは2回目だ。ほれ、やってみろ。
322: 2017/09/18(月)19:53 ID:WP9yXypF(31/46)調 AAS
>>320
誰へのレスのつもりだ?
>>321
> つまり列の選び方が同じであれば、値が変わりようがない
それを 証 明 し ろ と言っている。
変わりようがない!と吼えても命題は証明されない。
数学的証明という形でこのスレの住人にお前が正しいことを自ら示せ。
ほれ、前に通った道だ。設定をお膳立てしてやるよ
d:R^N→Nを時枝記事における決定番号とする。
Ω≡(R^N×R^N)を用いて確率空間(Ω,F,μ)を構成する。
μ≡μ_r×μ_r':R^N×R^N→N×Nは直積測度である。
お前の言う順序関係なる関数を定義し、それが可測であることを示せ。
323: 2017/09/18(月)19:54 ID:WP9yXypF(32/46)調 AAS
> μ≡μ_r×μ_r':
おっとすべった。(:R^N×R^N→N×N)は直積測度である。)はコピペミスなので無視を。
326(3): 2017/09/18(月)20:03 ID:WP9yXypF(33/46)調 AAS
>>324-325
キミキミ、逃げるでないw
[問題]
d:R^N→Nを時枝記事における決定番号とする。
Ω≡(R^N×R^N)を用いて確率空間(Ω,F,μ)を構成する。
μ≡μ_r×μ_r'は直積測度である。
お前の言う順序関係なる関数を定義し、それが可測であることを示せ。
この問題のどこに"dの分布”があるんだ?w
dの分布をオレに押し付けているのはオマエである。
オレはdの分布という単語は今日一日一度も言ってない。
> dの分布は忘れろ
考えたくないなら考えなければよい。
お前が考えるのはd1<d2なる測度だ。さあ問題に答えろよ。
オマエだけが主張する命題だからな。オマエしか答えられない。
答えられなきゃオマエの負け。単純明快だ。
328(2): 2017/09/18(月)20:06 ID:WP9yXypF(34/46)調 AAS
>>327
> 必要ないことはしないw
おいおい、オマエの主張の根幹をなす命題だろうがw
オマエが2列のR^Nを同じように選べばP(d1<d2)=P(d1>d2)が成り立つと言ったんじゃないか。
これが分からないのは猿なんだろ?オマエに言わせれば。
そこまで周りをコケにしてるんだから、お前には証明する義務がある。
はやく証明しろよ。
332(2): 2017/09/18(月)20:15 ID:WP9yXypF(35/46)調 AAS
>>331
> バカはバカにされて当然だ
> 首掻き切られないだけありがたいとおもえ
> このブタ野郎!
あらら。我慢しきれず取り乱しちゃいましたね。
>>330
> 同じやり方で、その都度確率が変わるというのは、前提に反する
おーい誰か。オレが"確率が変わる"と言ったか?笑
言ったならそのレス番号を教えてくれ。
オレは絶対に言っていない。
非可測であれば、確率は定まらないのである。
オマエはそれを昔教わったはずである:
2chスレ:math
--------------
問題1
写像 F:{ 1, 2 } → N を F(1)=1, F(2)=2 で定義する。
このとき、F(3)=F(4) が成り立つと言えるか?
解答
3と4は写像Fの定義域に入ってない。よって、F(3)とF(4)は定義されておらず、
"F(3)" とか "F(4)" という記号列を使うこと自体が間違っている。
もちろん、F(3)=F(4) は成り立たない。というか、F(3)=F(4) の
成立・不成立を問うこと自体がナンセンスである。
問題2
件の測度空間において、μ_r×μ_r'(H1)=μ_r×μ_r'(H2) は成り立つと言えるか?
解答
H1とH2は非可測なので、写像μ_r×μ_r'の定義域に入っていない。
よって、μ_r×μ_r'(H1)とμ_r×μ_r'(H2)は定義されておらず、
"μ_r×μ_r'(H1)" とか "μ_r×μ_r'(H2)" という記号列を使うこと自体が間違っている。
もちろん、μ_r×μ_r'(H1)=μ_r×μ_r'(H2) は成り立たない。というか、
μ_r×μ_r'(H1)=μ_r×μ_r'(H2) の成立・不成立を問うこと自体がナンセンスである。
333(3): 2017/09/18(月)20:31 ID:WP9yXypF(36/46)調 AAS
>>330
> >P(d1<d2)=P(d1>d2)が成り立つと言ったんじゃないか。
> 同じやり方で、その都度確率が変わるというのは、前提に反する
おまえは完全に忘れてしまったようだが、>>332のH1とH2は
2chスレ:math
> d(r1)≧d(r2)となるR^N×R^Nの部分集合全体をH1
> d(r1)≦d(r2)となるR^N×R^Nの部分集合全体をH2
と定義されている。
つまりオマエの言う順序関係の測度はμ_r×μ_r'(H1)とμ_r×μ_r'(H2)であり、
μ_r×μ_r'(H1)=μ_r×μ_r'(H2)
がいえればよい、ということになる。
左辺はオマエの言う"確率"P(d1≧d2)であり右辺はP(d1≦d2)である。
し・か・し、P(d1≧d2)=P(d1≦d2)はいえないのである(下記参照)
2chスレ:math
> H1とH2は非可測なので、写像μ_r×μ_r'の定義域に入っていない。
> よって、μ_r×μ_r'(H1)とμ_r×μ_r'(H2)は定義されておらず、
> "μ_r×μ_r'(H1)" とか "μ_r×μ_r'(H2)" という記号列を使うこと自体が間違っている。
> もちろん、μ_r×μ_r'(H1)=μ_r×μ_r'(H2) は成り立たない。というか、
> μ_r×μ_r'(H1)=μ_r×μ_r'(H2) の成立・不成立を問うこと自体がナンセンスである。
教訓: 関数を考えるときは 定 義 域 を意識しよう
338(1): 2017/09/18(月)20:42 ID:WP9yXypF(37/46)調 AAS
>>337
> >>324も解けないとか池沼かよw
挑発乙w
いまの問題にまったく関係がないw
どれが非可測関数なんだ?ん?(笑
343(1): 2017/09/18(月)20:45 ID:WP9yXypF(38/46)調 AAS
おーい、>>326はオマエの主張の根幹をなす命題だろうがw
------
[問題]
d:R^N→Nを時枝記事における決定番号とする。
Ω≡(R^N×R^N)を用いて確率空間(Ω,F,μ)を構成する。
μ≡μ_r×μ_r'は直積測度である。
お前の言う順序関係なる関数を定義し、それが可測であることを示せ。
------
オマエが2列のR^Nを同じように選べばP(d1<d2)=P(d1>d2)が成り立つと言ったんじゃないか。
これが分からないのは猿なんだろ?オマエに言わせれば。
そこまで周りをコケにしてるんだから、お前には証明する義務がある。
はやく証明しろよ。みんなオマエを待ってるよーw
これは一度通った道だ。>>333でもダメ押しした。
いまオマエに策は残されているのか?w
もはや測度論から離れてオレ流確率論を通すしかないぞ、こうなったら。
誰もしらない"確率"だからきちんと定義してから口を開けよ、哀れな素人2君w
344(1): 2017/09/18(月)20:49 ID:WP9yXypF(39/46)調 AAS
>>340
> 限りなく非可測関数に近づけられる
可測なら可測であり、非可測なら非可測であるw
いまは非可測関数diに対してP(d1≧d2)=P(d1≦d2)が成り立つかどうかが問題である。
オマエはなぜ自分の主張の核心たる問題から目を背けるのか?
オマエは自分の主張を証明しなければならない。
なぜならオマエは自分の主張が正しいことを認めなかった他人を貶してきたからだ。
さっさと証明しろ。オマエだけがそれをやる義務があり、オマエしかできない証明だ。
なぜなら、オマエだけが主張している命題であり、オレ様流確率論など誰も知らんからだ。
測度に基づかない確率とは一体なんだ?きっちり定義してP(d1≧d2)=P(d1≦d2)を示せ。
348: 2017/09/18(月)20:57 ID:WP9yXypF(40/46)調 AAS
>>347
> 同じやり方で、その都度P(di>dj(not(i=j)))
> が違うということはあり得ない
そのシレっと書いてるPがdi>djで定義されてませんよ、って言ってるんだけど。
お願いだから中学生の教科書の定義域の節を読み返してきてくれませんか?
350: 2017/09/18(月)20:59 ID:WP9yXypF(41/46)調 AAS
>>346
> 同じやり方で、その都度P(di>dj(not(i=j)))
> が違うということはあり得ない
> あり得るというなら貴様が例を示してみろ
> まあできまいがなwwwwwww
もう一度聞くけどさ、俺が「そのつど確率が変わる」ていつ言った?
それがオレの発言だというならレスを引用してくれる?
オレは確率が定義されない、と言っている。
確率が変わる、という主張は確率が定義されていることが前提である。
そんなことオレは言っていない。
オマエの過去のポカをもう一度コピペしてやろう。
まだ分からないようだからな。
351: 2017/09/18(月)21:02 ID:WP9yXypF(42/46)調 AAS
>>346
> 同じやり方で、その都度P(di>dj(not(i=j)))
> が違うということはあり得ない
確率が変わると言っているのではない。
di>djなる確率は定義されていないと言っている。
オマエの主張はいつまで経ってもP(di>dj)=P(di<dj)である。
その確率は定義されていないと何遍言ってもオマエには分からない。
よって、何遍でもオマエの間違いを思い起こさせてやろう。
--------------
ID:KkC8TkeYの定義域を無視するオレ流確率論:
2chスレ:math
> 私の反論は
> ・(r1,r2)を(r2,r1)と交換してもμ_r×μ_r'は変化しない
> ・上記交換によりH1はH2、H2はH1に移る
> したがってμ_r×μ_r'(H1)=μ_r×μ_r'(H2)
関数の定義域を無視しない確率論:
2chスレ:math
> H1とH2は非可測なので、写像μ_r×μ_r'の定義域に入っていない。
> よって、μ_r×μ_r'(H1)とμ_r×μ_r'(H2)は定義されておらず、
> "μ_r×μ_r'(H1)" とか "μ_r×μ_r'(H2)" という記号列を使うこと自体が間違っている。
> もちろん、μ_r×μ_r'(H1)=μ_r×μ_r'(H2) は成り立たない。というか、
> μ_r×μ_r'(H1)=μ_r×μ_r'(H2) の成立・不成立を問うこと自体がナンセンスである。
353: 2017/09/18(月)21:14 ID:WP9yXypF(43/46)調 AAS
ここに至っても定義域を理解しないID:KkC8TkeYは本当に定義域を知らない可能性がある。
定義域とは何なのか、ID:gqRaf1I9氏が分かりやすく書いている説明全文を引用しておく。
2chスレ:math
128 名前:132人目の素数さん[sage] 投稿日:2017/08/03(木) 07:51:24.73 ID:gqRaf1I9
問題1
写像 F:{ 1, 2 } → N を F(1)=1, F(2)=2 で定義する。
このとき、F(3)=F(4) が成り立つと言えるか?
解答
3と4は写像Fの定義域に入ってない。よって、F(3)とF(4)は定義されておらず、
"F(3)" とか "F(4)" という記号列を使うこと自体が間違っている。
もちろん、F(3)=F(4) は成り立たない。というか、F(3)=F(4) の
成立・不成立を問うこと自体がナンセンスである。
問題2
件の測度空間において、μ_r×μ_r'(H1)=μ_r×μ_r'(H2) は成り立つと言えるか?
解答
H1とH2は非可測なので、写像μ_r×μ_r'の定義域に入っていない。
よって、μ_r×μ_r'(H1)とμ_r×μ_r'(H2)は定義されておらず、
"μ_r×μ_r'(H1)" とか "μ_r×μ_r'(H2)" という記号列を使うこと自体が間違っている。
もちろん、μ_r×μ_r'(H1)=μ_r×μ_r'(H2) は成り立たない。というか、
μ_r×μ_r'(H1)=μ_r×μ_r'(H2) の成立・不成立を問うこと自体がナンセンスである
355(1): 2017/09/18(月)22:07 ID:WP9yXypF(44/46)調 AAS
落穂拾い。
>>274(ID:arAx3/4k)さんは>>278の回答で納得できたんですかね。
出題者がどんな数列を出題するかはまったく自由であり、
毎回出題が同じなら P(d1>d2)=P(d1<d2)は言えない、
という貴方の主張に対して、
ID:KkC8TkeYは
>>278
> ここでは数列の出し方は毎回同じとします
> そうでないと等確率だという前提が成立しないので
> 「箱入り無数目」の記事よりは強い条件ですがご容赦ください
と言ってますけど。
これはあなたの質問の答えになってるんですか?
私には意味がさっぱり分かりませんでしたがね。
356: 2017/09/18(月)22:15 ID:WP9yXypF(45/46)調 AAS
ああ、続きがありましたか(>>284)
どうやら貴方の質問の意味が分からなかったらしいですねw
>>284
> >>274
> >100回同じ数列を出題してもよく、そうしたとする。
>
> その場合d1=d2ですね 同じ数列ですからw
>
> え?第一列と第二列が同じ、という意味ではない?
> ではどういう意味?
362: 2017/09/18(月)23:03 ID:WP9yXypF(46/46)調 AAS
>>361
> こらこら、僕がそんなことをどこかに書いたか?(笑
単なる流れ弾だ。気にしないでくれ。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.053s