[過去ログ] 現代数学の系譜 古典ガロア理論を読む36 [無断転載禁止]©2ch.net (679レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
528
(2): 現代数学の系譜 古典ガロア理論を読む 2017/07/29(土)17:47 ID:GPYylyx3(13/16)調 AAS
>>527 つづき

<選択公理説明4>
1.”選択公理←→ Zorn の補題←→ 整列可能定理”という関係があって、バリエーション豊富だし
 「感覚的には受け入れやすいものであるし, 導入した方が数学体系としては豊富で広がりをもつものになると多くの人が考えている」(上記 戸松玲治先生 )
2.普段何気なくやってる数学には、土台(ZFC) がある(上記 戸松玲治先生 )
3.土台(ZFC) の上に、膨大な数学の積み重ねがある。(上記の量子力学やエキゾチック R4もそうだ。(説明は省略する))

つづく
529
(2): 現代数学の系譜 古典ガロア理論を読む 2017/07/29(土)17:48 ID:GPYylyx3(14/16)調 AAS
>>528 つづき

<選択公理説明5>(選択公理の比喩的説明)
1.ちょうど良いタイミングで、>>510のコメントがあった >>20 より
 ”理学部では数学を教えているが、だからといって数学が自然科学というわけではない。数学は自然科学ではなく、あくまで形式科学である。物理学を記述するのには自然言語や数学という一種の"記述言語"が必要”
  なので、ZFCをコンピュータの言語に例えよう。有名なのがunix系で動くC言語。豊富なソフトウェアーライブラリーが揃っているという。
  と、同様に、ZFCを採用すれば、現代数学の豊富な数学ライブラリーが使える。その中に、標準的な現代確率論があるよと
  だから、ZFC以外の言語を採用しても良いけど、ZFCでも非可測集合の存在や多少のパラドックスはそれほど気にしなくても良いというのが、コンヌ先生などの判断
2.「フルパワーの選択公理」について
  可算選択公理 https://ja.wikipedia.org/wiki/%E5%8F%AF%E7%AE%97%E9%81%B8%E6%8A%9E%E5%85%AC%E7%90%86
   (抜粋)
  「名前の通り、選択公理を可算集合族に限定したものになっている。」
  「他の公理との関係
  ACωは選択公理や従属選択公理(英語版)よりも弱い主張である。実際、選択公理が成り立たないソロヴェイのモデル(英語版)においても、可算選択公理は成り立つ。
  ポール・コーエンはACωがZF集合論から証明できないことを示した。」
  (引用終り)
  まあ、「フルパワーの選択公理」は、制限付きの選択公理の上位互換バージョンだと思えば良い。
  制限付きの選択公理で出来ることは、全て上位互換バージョンの「フルパワーの選択公理」で可能
  だから、普通の数学では、連続濃度や、その上の関数空間を扱う。だったら、最初から「フルパワーの選択公理」を使います
  なので、途中から、ここまでは可算選択公理、これ以上は「フルパワーの選択公理」なんて区別する気遣いは、普段何気なくやってる数学では全く必要ないことだよ(>>446は、全く分かってないね)

つづく
648
(1): 現代数学の系譜 古典ガロア理論を読む 2017/07/31(月)21:30 ID:z8P//WPb(12/14)調 AAS
>>528 関連

> 1.”選択公理←→ Zorn の補題←→ 整列可能定理”という関係があって、バリエーション豊富だし

英ZFCの解説では、Well-ordering theorem で説明しているね。確かに、Well-ordering theoremが分かり易いかもしれないね(^^
https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory
(抜粋)
2 Axioms
2.1 Axiom of extensionality
2.2 Axiom of regularity (also called the Axiom of foundation)
2.3 Axiom schema of specification (also called the axiom schema of separation or of restricted comprehension)
2.4 Axiom of pairing
2.5 Axiom of union
2.6 Axiom schema of replacement
2.7 Axiom of infinity
2.8 Axiom of power set
2.9 Well-ordering theorem
(引用終り)
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.032s