[過去ログ] 現代数学の系譜 古典ガロア理論を読む36 [無断転載禁止]©2ch.net (679レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
203(1): 現代数学の系譜 古典ガロア理論を読む 2017/07/15(土)16:00 ID:uQKi2Au+(17/27)調 AAS
>>148
おっちゃん、どうも、スレ主です。
戻る 過去スレ 35 2chスレ:math
”2)商集合、代表(代表番号関連) ”を説明しよう
https://ja.wikipedia.org/wiki/%E5%90%8C%E5%80%A4%E9%A1%9E
同値類
(抜粋)
フォーマルには,集合 S と S 上の同値関係 ? が与えられたとき,元 a の S における同値類は,a に同値な元全体の集合
{x∈ S | x〜 a}
「同値関係」の定義から同値類は S の分割をなす.この分割,同値類たちの集合,を S の ? による商集合 (quotient set) あるいは商空間 (quotient space) と呼び,S/? と表記する.
記法と定義
元 a の同値類は [a] と書き,a と ? によって関係づけられる元全体の集合
[a]={x∈ X| a 〜 x}
として定義される.同値関係 R を明示して [a]R とも書かれる.これは a の R-同値類といわれる.
同値関係 R に関する X のすべての同値類からなる集合を X/R と書き,X の R による商集合 (quotient set of X by R, X modulo R) と呼ぶ[5].X から X/R への各元をその同値類に写す全射 x→ [x] は標準射影と呼ばれる.
各同値類の元を(しばしば暗黙に)選ぶと,切断(英語版)と呼ばれる単射が定義される.この切断を s で表せば,各同値類 c に対して [s(c)] = c である.元 s(c) は c の代表元 (representative) と呼ばれる.切断を適切に取って類の任意の元をその類の代表元として選ぶことができる.
ある切断が他の切断よりも「自然」であることがある.この場合,代表元を標準(英語版)代表元と呼ぶ.例えば,合同算術において,整数上の同値関係で,a ? b を a ? b が法と呼ばれる与えられた整数 n の倍数であると定義したものを考える.
各類は n 未満の非負整数を唯一つ含み,これらの整数が標準的な代表元である.類とその代表元は多かれ少なかれ同一視され,例えば a mod n という表記は類を表すことも標準的な代表元(a を n で割った余り)を表すこともある.
(引用終り)
つづく
204(1): 現代数学の系譜 古典ガロア理論を読む 2017/07/15(土)16:01 ID:uQKi2Au+(18/27)調 AAS
>>203 つづき
補足
1)時枝記事の可算無限数列のしっぽの同値類では、”標準代表元”は決められない。だから、代表元の選び方は、任意だ。
参考: https://ja.wikipedia.org/wiki/%E5%90%8C%E5%80%A4%E9%96%A2%E4%BF%82 同値関係
”S の相異なる同値類からはひとつずつ、全部の同値類から代表元を取り出して作った S の部分集合を、集合 S における同値関係 ? の(あるいは商集合 S/? の)完全代表系 (complete system of representatives) と呼ぶ。”
2)時枝記事の実数列の集合 R^Nをベクトル空間と考えて、あるしっぽの同値類をUとして、m+1番目から先が一致するとして*)
s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈U で
二つのベクトルの差Δs=s−s’=(s1-s'1,s2-s'2,s3-s'3 ,・・,sm-s'm,0,0,・・)となる。つまり、差を取れば、m+1番目から先は0。
注*)記述を簡素にするため。m番目から先が一致とすると「s(m-1)-s'(m-1)」の表記になり、添え字がみにくくなるため。
おっちゃん、分かる?
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.037s