[過去ログ] 現代数学の系譜 古典ガロア理論を読む36 [無断転載禁止]©2ch.net (679レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
134(1): 現代数学の系譜 古典ガロア理論を読む 2017/07/14(金)07:24 ID:9Pw6pau2(4/7)調 AAS
>>87 つづき
https://srad.jp/~taro-nishino/journal/590213/
taro-nishinoの日記: アラン・コンヌへのインタビュー 第二部 2015年02月23日
(抜粋)
アラン・コンヌ博士と言えば、著書Noncommutative Geometry[非可換幾何学]、Noncommutative Geometry, Quantum Fields and Motives[非可換幾何学、量子場理論、モチーフ理論](Matilde Marcolli博士との共著)が有名です。
これから読みたいと思っている人もいるでしょう。私もある人から前提知識は何なのか聞かれたことがあります。はっきり言えば、こんな質問する人には無理だと言ってもいいかと思います。
今回紹介するインタビューの中でもコンヌ博士が言っていますが、数学のどの分野を専攻するにしても最低限の共通バックグラウンド(微分幾何学、代数幾何学、代数構造、実解析、複素解析)がほぼ仮定されています。
つまり、大学4年間と大学院修士課程で学習するであろう科目すべてを含んでいます。さらに、両著とも物理学の或る程度の素養も仮定されています。それは非可換空間で標準模型を扱っているのだから当たり前です。
例えばラグラジアンが何たるかを全く知らない人が両著のいくばくかの物理の解説を読んでも理解出来るとは私には思えません。
それからもう一つ重要なことがあります。インタビューの第一部でも言及されていましたが、コンヌ博士は計算大好き人間です。従って、極端なことを言えば、くりこみの摂動計算を手でやったことがない人は皮相的な理解で終わる可能性があります。
21世紀の数学は、ユーリ・マニン博士も言っていますが、"量子化"と言うテーマの時代と言っていいのではないでしょうか。つまり、20世紀のように抽象論を振りかざすだけで何とかやっていた時代は終わったということでしょう。
いずれにせよ、インタビューの第二部の私訳を以下に載せておきます。なお、このインタビュー記事は EMS Newsletter March 2008 (PDF)
http://www.ems-ph.org/journals/newsletter/pdf/2008-03-67.pdf
の中に収録されているので、原文に関心がある人は該当ページを探してください。
(引用終り)
483(4): }現代数学の系譜 古典ガロア理論を読む 2017/07/27(木)17:18 ID:YZ3Kn0mY(2/5)調 AAS
>>482 つづき
二つ目は素数の空間だ:リーマンゼータでしょうね(>>134)
https://srad.jp/~taro-nishino/journal/590213/
taro-nishinoの日記: アラン・コンヌへのインタビュー 第二部 2015年02月23日
(抜粋)
70年代から貴方の数学的探求を見守れば、貴方がいつも物理学とゼータ函数に魅せられて来ている印象を受けます。
確かに。リーマンのゼータ函数に対する私の熱中は、リーマンの式(素数分布でゼータ函数の零点を述べている)をイデールの観点で再定式化しているヴェイユの研究を読んでいることから来ている。
この式の"素数"側とレフシェッツ不動点定理の間に著しい類似があり、第一の問題はリーマン-ヴェイユの式がトレース式になるようにイデールが作用する空間Xを見つけることだ。
ある時点、葉層構造に関するVictor Guilleminの論文とセルバーグのトレース式を読んだ後で、空間Xは葉層構造の葉の空間でなければならず、従って非可換空間だと私は認識した。
リーマンのゼータ函数に関するシアトルでのカンファレンスに行く後まで10年間、このアイデアに私は魅了されたままだった。量子統計力学に関するBostと私の研究で空間Xは既に存在し、単にアデールクラスの空間であると認識した。
すなわち、体の乗法群の作用によるアデールの商空間。これは、トレース式として数論の、そして吸収スペクトルとして零点のスペクトル実現のリーマン-ヴェイユ式の解釈を与える。
つづく
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.041s