[過去ログ] 現代数学の系譜 古典ガロア理論を読む36 [無断転載禁止]©2ch.net (679レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
657(1): 2017/08/01(火)07:07 ID:I+jKefSz(1/3)調 AAS
簡単のためn=2で考える
実数の順序対(r1, r2)を自然数の順序対(d(r1), d(r2))へ移す関数をf_1、
(r1, r2)を(d(r2), d(r1))へ移す関数をf_2とおく
ここでdは時枝記事における決定番号でありd:R^N→N
次にΩ≡(R^N×R^N)×Sを用いて確率空間(Ω,F,μ)を構成する
ここでS≡{f_1, f_2}、μ_s(f_i)=1/2と定義し、
直積測度μ≡μ_r×μ_r'×μ_sを考える
[1] 1番目の項が最大となる確率はいくつか?
f_1∈Sが選ばれたとしよう
d(r1)≧d(r2)となるR^N×R^Nの部分集合全体をH1として
H1∈Fならばμ_r×μ_r'(H1)が求める確率である
f_2∈Sが選ばれたときも同様にして、d(r1)≦d(r2)となるR^N×R^Nの
部分集合全体をH2としてμ_r×μ_r'(H2)が求める確率となる
すなわち{μ_r×μ_r'(H1)+μ_r×μ_r'(H2)}/2が得られる
[2] 2番目の項が最大となる確率はいくつか?
[1]と同様に考えると{μ_r×μ_r'(H2)+μ_r×μ_r'(H1)}/2が得られる
かくして[1],[2]より
「1番目の項が最大となる確率=2番目の項が最大となる確率=1/(順列の長さ)」
が得られる
これが無定義君の>>624の主張である
以上はf_1, f_2が 可 測 な ら ば 正しい
ところがdは非可測であったのでf_1,f_2は非可測となりH1,H2∈Fは言えないのである
Fの要素でないH1,H2に対してμ_r×μ_r'(H1), μ_r×μ_r'(H2)は求まらない
そもそも確率が定義されないので
「1番目の項が最大となる確率=2番目の項が最大となる確率」
は言えない
これが無定義君の>>624に対する反論である
658: 2017/08/01(火)07:11 ID:I+jKefSz(2/3)調 AAS
>>655
> 残念だがルベーグ測度で”のみ”考える馬鹿のままでは分かり様がない
なんか思いっきり勘違いしてないか?
出題者はR^Nを任意に選べるんだから
離散測度で話が収まるわけないじゃん
668: 2017/08/01(火)11:02 ID:I+jKefSz(3/3)調 AAS
>>655
> 確率計算の根拠は以下
> ・長さnの順列はn!個(自明)
> ・各順列を値にもつ確率は等しい
> (関数(R^∞)^n→N^nが、変数の交換により不変であり
> 変数の交換は各順列を代表にもつ同値類どうしの変換となるから)
>>657において2つの実数列R^Nがfixされているならば無定義君の主張は成り立つ
このときΩ={r1∈R^N}×{r2∈R^N}×Sであり有限の可測空間(S, 2^S)で話は収まる
よって命題Aは示される(無定義君の「100!論法」はまったく必要ないが・・・)
>>608
> 命題A:任意のfixされたr∈R^Nで99/100が成り立つ
> 命題B:r∈R^Nを確率標本にとっても99/100が成り立つ
しかしR^Nが確率的に選ばれる命題Bは「100!論法」をもってしても示せない(笑)
非可測なd:R^N→Nが根本にあるかぎり、どれだけ順列や同値類を捏ね回しても非可測性は解決しない
改めて>>621-625を読んでみたが、R^Nの確率空間の記述がどこにもないんだよな
>>610
> この馬鹿はなぜかrをfixしたがる
> いわゆる肛門期かもしれんw
という幼稚な煽りをしておきながら、
お前の渾身の>>621-625はR^Nをfixしなければ成り立たない
こんなしょぼいオチはねーだろカス
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.034s