[過去ログ] 現代数学の系譜 古典ガロア理論を読む35 [無断転載禁止]©2ch.net (667レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
71(2): 2017/06/20(火)22:16 ID:E7mtuwZm(2/2)調 AAS
> 少し、確率論のテキストを読んで勉強されたらどうですか?
スレ主の他人への「○○を勉強しろ」は、スレ主自身は○○を理解していないことを意味します
また、スレ主は他人の発言内容を理解できないので、不適切な引用をします
>>65の
> > 「決定番号に上限がない」
> >=”決定番号は有限ではない”
> >=”決定番号は無限”ですよね?
> いいえ(キッパリ)
を
>>69
> >> 「決定番号に上限がない」
> >いいえ(キッパリ)
のように
75(1): 2017/06/21(水)06:43 ID:17miKOtA(2/6)調 AAS
>>69 >>71 >>72
>>65の主張は以下だと思うが如何?
---
> 「決定番号に上限がない」
はい
>=”決定番号は有限ではない”
>=”決定番号は無限”ですよね?
いいえ(キッパリ)
---
79(2): 現代数学の系譜 古典ガロア理論を読む 2017/06/21(水)13:56 ID:jkQw9XXq(1/5)調 AAS
>>70-72>>75-78
みなさん、どうも。スレ主です。
有限無限について、代表で>>75から下記を引用する
「>>65の主張は以下だと思うが如何?
---
> 「決定番号に上限がない」
はい
>=”決定番号は有限ではない”
>=”決定番号は無限”ですよね?
いいえ(キッパリ)」
(引用終り)
この話は、もともと「ボックスの数が有限の場合と、無限の場合で、全く違う」>>30という話がから始まっているんだよ
そして>>41で ID:4xo5X+iQ 氏は
「>>40で述べたように、
”ボックスの数が有限の場合と、無限の場合で、全く違う”
ことの説明に「可測・非可測」も「100列のうち最大値が1列」も関係ない
0 有限なら決定番号に上限値があるが、無限なら上限がない
↑これだけ」
となったわけ
決定番号は任意の自然数の値を取るから、”上限がない” 即ち ”無限”ってことですよ
くどいが、ボックスの数Lが有限の場合、決定番号kは、1<= k <=Lとなる
時枝記事では>>12 のように箱が「可算無限個」だから、”L→∞を考えろ”ということ。よって、1<= k <∞となる。
つまり、決定番号kは、1から全自然数にわたる可能性があるってことですよ
で、私が>>57に書いたように
「自然数の集合をNとします。
任意のn∈Nで、個々のnは有限です。
しかし、自然数の集合Nは、可算無限集合です。
なので、1<=nとすると、変数nの範囲は、[1,∞)です。」ということで
同様に、決定番号kの範囲は、[1,∞)です。つまり、「決定番号kに上限がない」>>41と
これは、上記自然数の集合N(=可算無限)で書いたように、可算無限集合の個々の要素が有限であることと矛盾しません
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.037s