[過去ログ] 現代数学の系譜 古典ガロア理論を読む35 [無断転載禁止]©2ch.net (667レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
542(7): 現代数学の系譜 古典ガロア理論を読む 2017/07/08(土)10:29 ID:yPoPkF9y(3/12)調 AAS
>>541 つづき
もう一つの論点は、成績の例えで言えば、問題が易しすぎて、ほとんど全員が満点を取ってしまうような場合だ
理想的な試験の難易度は、満点100点で、平均(μx)50点で、σx (標準偏差)=10 となるような問題だろう。
この場合、得点の数値xiと偏差値Ti Ti=10(xi-μx)/σx+50 で、Ti=xiとなるし、0〜100点の全区間を評価に使っている。
対して、問題が易しすぎて、ほとんど全員が満点を取ってしまうような場合、平均(μx)100点、σx (標準偏差)=0で、偏差値Tiは計算できない
時枝記事の決定番号の分布がこれだ
>>528の”s=(s_1, s_2, s_3 ,…,s_m,s_m+1,s_m+2,…),s'=(s'_1, s'_2, s'_3 ,…,s_m,s_m+1,s_m+2,…)∈R^N は非可算個ある。”に戻ろう
数列sが代表、数列s'たちが、同値類だ。>>523の設定のように、数列s'に対する決定番号はmとして良いだろう
上記の成績の例で言えば、数列s'たちが生徒で、決定番号mが試験の得点に例えられよう
決定番号m=4としよう。いっちするしっぽを無視すると、s'=(s'_1, s'_2, s'_3 )と書ける。
s'_1, s'_2, s'_3たちは、s'_3 not= s_3(∵s'_3 = s_3 の場合決定番号が3になる)の任意の実数の組み、つまり、R^3。
決定番号m=5としよう。s'=(s'_1, s'_2, s'_3, s'_4 )|s'_4 not= s_4 だから、R^4。つまり、R^3xR とみることができる。
ここで、決定番号m=1,2,3,4,5を合わせた集合の中から、一つ数列を選ぶ。
これを、s'=(s'_1, s'_2, s'_3, s'_4 )と書いても一般性を失わない。 但し、s'_4 = s_4 も許容することとする。
だれが考えても、作為なしにs'を選ぶなら、決定番号m=4となる確率は1だ
∵決定番号m<=3となる場合は、s'_4 = s_4 の1点に限られ、それ以外の任意の実数rに対して、決定番号m=4となるのだから
そして、これが、決定番号m=5,決定番号m=6,・・・と繰り返され、mに上限がないということを思い出そう
もう言いたいことが、お分かりだろう
可算無限長の数列で、ある同値類の集合に対して、そこから任意の元を取り出したとき、有限の値mになる確率は0だ
∵有限の値mに対し、かならずm+1の決定番号を持つ数列が、xR倍存在するから(議論の詳細は上記の通り)
つづく
543(4): 現代数学の系譜 古典ガロア理論を読む 2017/07/08(土)10:30 ID:yPoPkF9y(4/12)調 AAS
>>542 つづき
附言しておくが、ここでは、有限の値mとなる数列の存在を否定しているわけではないことにご注意
例外として有限の値mとなる数列より、m+1となる数列が圧倒的に多い。それが、ずっと繰り返されると
まあ、例「ほぼ全員が100点を取る試験の順位を考える」(例外として、100点以外がごく小数許容される)という話が適切かどうかは、議論はあると思うが。まあ、それに類することだと思ってくれ
これが第2の論点
おっちゃんには、第2の論点の方が理解し易いかな? もともとは、おっちゃんの>>523の設定を使っていし、おっちゃんの強い分野だからね(^^
第1の論点も、おっちゃんなら、よく読んで貰えばわかるだろう
まあ、”決定番号が変数として[1,∞) (半開区間)の整数”というところは、どちらかと言えば、第1の論点の方に強く出ていると思う
以上です
おっちゃん、どうですか?
550(3): 現代数学の系譜 古典ガロア理論を読む 2017/07/08(土)14:23 ID:yPoPkF9y(7/12)調 AAS
>>547-549
おっちゃん、どうも、スレ主です。
レスありがとう
>>n人の人がカラオケバトルしたとします
>トップは平均何回入れ替わるでしょう?
>とは、「入れ替わる回数の平均を求める問題」で、
>そのような問題と解釈していいんだろ?
>それなら、私の考え方で答えは「1−1/n」になり、当たっているじゃないか。
前提が全く違う話です。
なので、この話は後で。
>母集団だの偏差値の算出方法だのは全く分からず、そういう話にはついていけん。
了解。じゃ、>>542-543の第2の論点の方はどう?
「可算無限長の数列で、ある同値類の集合に対して、そこから任意の元を取り出したとき、有限の値mになる確率は0だ
∵有限の値mに対し、かならずm+1の決定番号を持つ数列が、xR倍存在するから(議論の詳細は上記の通り)」>>542
ということだが。詳しくは、>>542を見て下さい(^^
561: 現代数学の系譜 古典ガロア理論を読む 2017/07/08(土)17:35 ID:yPoPkF9y(11/12)調 AAS
>>560 補足
>つまり、「s^k=最大値Dとなる確率は1/100に過ぎない」が言えるためには、”決定番号 s^1,s^2,・・、s^k,・・s^99,s^100 が全て異なる値を取る”という、”ごく一般的な状況を想定している”ってことだろ?
だが、この”ごく一般的な状況”が、実は簡単には「成り立たない」よと
それが、>>540-544であり、第1の論点と第2の論点だよ
574(2): 現代数学の系譜 古典ガロア理論を読む 2017/07/08(土)22:40 ID:yPoPkF9y(12/12)調 AAS
>>562
おっちゃん、どうも、スレ主です。
レスありがとう。了解だ。時枝記事の理解が進んだね
まあ、明日ゆっくり考えて下さい(^^
乗りかかった船というか、折角いままで1年以上時枝記事に関わったんだから、最後正しい理解「時枝記事は不成立」まで到達してほしいね
それが、おっちゃんにとっても、いままでの議論を無駄にしない選択だと思うし、私にとってもありがたい
>>540-544に書いた、第1の論点と第2の論点。特に論点2の方を頼む。
集合論や解析につよい、おっちゃんなら、少し考えれば分かるだろう(^^
まあ、>>517に書いたことも、かなり理解できるだろうと思うよ。例えば
「2.時枝記事>>12で、例えば数列のs = (s1,s2,s3 ,・・・,sn ,・・・)で、snが確率99/100で的中したとする。
ビデオの逆回しのように、時間を戻すと、snに数を入れるとき、”by choosing the xi independently and uniformly on [0, 1] ”とすれば、いままで入れてきた箱や、これから入れる箱の数とは、独立なはず。
だから、その時点では的中確率0(ゼロ)だ。
ところが、時間が経って、箱の列が伸びて、可算無限個になったら、確率が変化して99/100か? それはおかしいだろう?」など
これ、逆に考えれば、
数列のs = (s1,s2,s3 ,・・・,sn ,・・・)で、snが確率99/100で的中したとする。この数列のしっぽを切って有限列とする
s = (s1,s2,s3 ,・・・,sn ,・・・,sm) だ。smは有限の範囲でいくらでもしっぽをずーと長く取れる
が、いくら長くても有限だと、的中確率0(ゼロ)だって(^^
一方、可算無限長さだと、確率99/100だと??(^^
ここらのおかしさ(奇妙さ)も、>>540-544の第1の論点と第2の論点で説明がつくだろう
あと、平場 誠示先生>>277 「無限大はあくまで, 有限な値からの極限として考えるべきものである.」という
これ、解析学の基本だよね。無限を、有限な値からの極限として考えない人は、おかしな結論に気付かないんだな(^^
581(4): 現代数学の系譜 古典ガロア理論を読む 2017/07/09(日)08:28 ID:P/6T2Xvy(1/7)調 AAS
>>574 補足
おっちゃん、どうも、スレ主です。
補足しておくよ
>母集団だの偏差値の算出方法だのは全く分からず、そういう話にはついていけん。 >>548
分かったよ。確率計算のところは、抜きにして良い(^^
なので>>542 の第2の論点たのむ。下記引用しておく
”>>528の”s=(s_1, s_2, s_3 ,…,s_m,s_m+1,s_m+2,…),s'=(s'_1, s'_2, s'_3 ,…,s_m,s_m+1,s_m+2,…)∈R^N は非可算個ある。”に戻ろう
数列sが代表、数列s'たちが、同値類だ。>>523の設定のように、数列s'に対する決定番号はmとして良いだろう
上記の成績の例で言えば、数列s'たちが生徒で、決定番号mが試験の得点に例えられよう
決定番号m=4としよう。いっちするしっぽを無視すると、s'=(s'_1, s'_2, s'_3 )と書ける。
s'_1, s'_2, s'_3たちは、s'_3 not= s_3(∵s'_3 = s_3 の場合決定番号が3になる)の任意の実数の組み、つまり、R^3。
決定番号m=5としよう。s'=(s'_1, s'_2, s'_3, s'_4 )|s'_4 not= s_4 だから、R^4。つまり、R^3xR とみることができる。
ここで、決定番号m=1,2,3,4,5を合わせた集合の中から、一つ数列を選ぶ。
これを、s'=(s'_1, s'_2, s'_3, s'_4 )と書いても一般性を失わない。 但し、s'_4 = s_4 も許容することとする。
だれが考えても、作為なしにs'を選ぶなら、決定番号m=4となる確率は1だ
∵決定番号m<=3となる場合は、s'_4 = s_4 の1点に限られ、それ以外の任意の実数rに対して、決定番号m=4となるのだから
そして、これが、決定番号m=5,決定番号m=6,・・・と繰り返され、mに上限がないということを思い出そう
もう言いたいことが、お分かりだろう
可算無限長の数列で、ある同値類の集合に対して、そこから任意の元を取り出したとき、有限の値mになる確率は0だ
∵有限の値mに対し、かならずm+1の決定番号を持つ数列が、xR倍存在するから(議論の詳細は上記の通り)”
(引用終り)
つづく
607(3): 現代数学の系譜 古典ガロア理論を読む 2017/07/09(日)13:34 ID:P/6T2Xvy(5/7)調 AAS
>>605 補足
先回りして書いておくと
>>13 時枝記事より抜粋
抜粋1)
”これらの列はおのおの決定番号をもつ.
さて, 1〜100 のいずれかをランダムに選ぶ.
例えばkが選ばれたとせよ.
s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない.”
抜粋2)
” S^1〜S^(k-l),S^(k+l)〜SlOOの決定番号のうちの最大値Dを書き下す.
いよいよ第k列 の(D+1) 番目から先の箱だけを開ける:S^k(D+l), S^k(D+2),S^k(D+3),・・・.いま
D >= d(S^k)
を仮定しよう.この仮定が正しい確率は99/100,そして仮定が正しいばあい,上の注意によってS^k(d)が決められるのであった.
おさらいすると,仮定のもと, s^k(D+1),s^k(D+2),s^k(D+3),・・・を見て代表r=r(s~k) が取り出せるので
列r のD番目の実数r(D)を見て, 「第k列のD番目の箱に入った実数はS^k(D)=r(D)と賭ければ,めでたく確率99/100で勝てる.”
(引用終り)
<要するに>
1.100列で考える前に、問題を簡略化して1列で考察してみよう
つまり、上記1)2)を簡略化して
1’)何らかの方法で、大きな数Dを決める
2’)D >= d(S^k)であれば勝ちで、D < d(S^k)であれば負け
とすることができる
2.そうすると、”100列に拘らず、単にDとして十分大きな数を選べば、勝てる”と言い換えることができるだろう
そこから、”いったい、Dとしてどれくらい大きな数を選べば十分か”という問題が生ずる
それを考えたのが、>>581に引用した>>542の第2の論点なんだよ。結論は、どんなに大きな数Dを選んでも、十分ではない
∵決定番号に上限はないのだし、決定番号は mに対してその後者のm+1となる同値類の元が圧倒的に多い。それが際限なく続くのだからと>>581
3.そして、この上記2項に記載のことは、他の99列についても同様に成り立つんだ
これが、時枝記事が「一見成立するように見えて、本当は不成立」となる理由だよ
まあ、同値類がしっかり理解できたら、これを考えてみてください
よろしく(^^
624(2): 現代数学の系譜 古典ガロア理論を読む 2017/07/09(日)23:11 ID:P/6T2Xvy(7/7)調 AAS
>>618
おっちゃん、どうも、スレ主です。
>>スレ主が目に余るからだよ
>やはり、スレ主が主な原因か。
勿論、私スレ主が主因だよ
まあ、おっちゃんが、時枝記事に関連して
1)同値関係 https://ja.wikipedia.org/wiki/%E5%90%8C%E5%80%A4%E9%96%A2%E4%BF%82
2)商集合、代表(代表番号関連)
(同値類 (含む商集合) https://ja.wikipedia.org/wiki/%E5%90%8C%E5%80%A4%E9%A1%9E
同値関係、商集合(もう一人のY君) http://blog.thetheorier.com/entry/equivalence )
3)極限 https://ja.wikipedia.org/wiki/%E6%A5%B5%E9%99%90
4)自然数の集合N、実数の集合Rに対し、任意の元∀n∈N,∀r∈Rで、n,rは有限である。
にも関わらず、当然ながら集合N、集合Rとも無限集合である。
集合N、集合Rにはノルム(距離)が入り、1<=n<∞、-∞<r<∞ である
あと、おっちゃんの解析に強いところで、>>542 を理解してもらえれば良い
1)〜2)は、数学のいたるところ出現するから、やって損はないだろう
3)極限は、おっちゃんの方が、理解しているだろう
4)も、おっちゃんには言わずもがな
>>542 の第2の論点もすぐ分かるだろう
>時枝記事もさっさと終わってほしいよ >>614
まあ、おっちゃんが、上記を理解したら、時枝は終わりにしよう
私が>>317を書いたあと、従来見(ケン)だった¥さんが、コメントを出した>>318〜>>500まで続いた
時枝も、大体煮詰まったということだろう。私も、そろそろ”しおどき”と思う
まあ、数学はね、分からんやつには分からんのよ。いくら教えてもだし・・
そもそも、こんな不便な板で、あまり議論をしても限界があるし、する気も無いんだ・・
時枝記事は特別でね。「デタラメ書いている」と、すぐ分かった。時枝先生が分かって”ジョーク”(与太話)としたのかも
まあ、表題からして「箱入り無数目」(箱入り娘のしゃれ)だからね(^^
時枝先生も、半信半疑だろうか、記事の後半はいろいろ言い訳に終始しているよね
だが、おそらく真に受ける人も多いだろうと、思ったんだよね(^^
¥さんほど、高い志は無かったが、面白いので、取り上げた。が、そろそろ幕引きにしようと
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.034s