[過去ログ] 現代数学の系譜 古典ガロア理論を読む35 [無断転載禁止]©2ch.net (667レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
312
(1): 現代数学の系譜 古典ガロア理論を読む 2017/07/02(日)08:07 ID:Tk8xp2li(5/10)調 AAS
>>311 つづき

補足:
実数Rで、開集合を考えることにより、可算の範囲で考えることができるようになります。
過去スレ16 2chスレ:math 辺りが参考になるでしょう
えーと、P166 幾何学序論講義ノート 佃修一 琉球大学 2014 年4 月1 日 / 1.2MB http://www.math.u-ryukyu.ac.jp/~tsukuda/lecturenotes/note_20140401.pdf(このリンクはまだ有効) などですね

ところで、時枝問題においては、実数R∋r で、rを箱に入れて、数列を作り、数列のしっぽで商集合を作り、決定番号dを決める。d+1以降の箱を開けて、代表列を求め、代表列のd番目の箱の数を知る。
こういう問題構成ですので、実数Rはあくまで、1点rとして非加算集合で扱うしかない。開集合を考え、位相空間として扱うことが難しい。
(実数Rは、距離空間であり、近傍系から、開集合を考えることができる。だが、開集合を箱に入れることはできない。箱に入れられるのはあくまでただ1点の数に限られる。だから、この問題では開集合は機能しない。)
だから、時枝問題をσ-fieldとして扱えない。なので、適切な確率空間 (Ω,F, P)を構成することができなかった。

但し、適切な確率空間 (Ω,F, P)を構成することができなかったけれども、「1 点の長さは0」は数学の常識として、多くの場合に成り立つと思っています。
これを認めるなら、実数R∋r で、1点rをピンポイントで的中させることは、普通確率0(ゼロ)でしょうね。よほど、特殊な条件が無ければ。
323
(1): 2017/07/02(日)10:51 ID:oKNJu2HT(2/3)調 AAS
時枝記事に関する私の解釈は以前にきちんと書いている。
あなたのコピペ乱舞によりずいぶん遠くへ流されてしまった。
あなたのせいでいちいち引っ張ってくるのも面倒である。

>>309-312は付け焼刃な素人発言であり返答に値しない。
『ここがわからないので教えてください』
という態度なら相手をする気にもなるが、何も分かっていないあなたに

>>310
> 諸刃の剣というやつですよ。

と挑発されてイチイチ乗っかりたくはないし、

>>311
> あなたが考えている分布が、「→-∞および+∞ で、0(ゼロ)に収束」することを証明しないといけません。
> あなたは、そこはスルーですか?

と挑発されても、そもそもなんであなたのオリジナルな問題設定について
『私が分布を考えている』ことになっているのか、意味がわからないし、

>>312
> 箱に入れられるのはあくまでただ1点の数に限られる。だから、この問題では開集合は機能しない。

という意味不明な発言にイチイチ茶々を入れても、ただ疲れるだけである。

私はあなたの確率空間の設定の誤りを親切心から指摘してあげた(>>196)のである。
あなたに挑発される覚えはない。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.037s