[過去ログ] 現代数学の系譜 古典ガロア理論を読む35 [無断転載禁止]©2ch.net (667レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
283
(1): 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:09 ID:INb7Gqhx(10/26)調 AAS
>>282 つづき

https://ja.wikipedia.org/wiki/%E5%AE%8C%E5%85%A8%E5%8A%A0%E6%B3%95%E6%97%8F
完全加法族
数学における完全加法族(かんぜんかほうぞく、英: completely additive class [of sets])、可算加法族(かさんかほうぞく、英: countably additive class [of sets])あるいは (σ-)加法族、σ-集合代数(シグマしゅうごうだいすう、英: σ-algebra [of subsets over a set])、σ-集合体(シグマしゅうごうたい、英: σ-field [of sets])[注 1]は、
主な用途として測度を定義することに十分な特定の性質を満たす集合の集まりである。特に測度が定義される集合全体を集めた集合族は完全加法族になる。
この概念は、解析学ではルベーグ積分に対する基礎付けとして重要であり、また確率論では確率の定義できる事象全体の成す族として解釈される。完全加法族を接頭辞「完全」を付けずに単に「加法族」と呼ぶことも多い(つまり、有限加法族の意味ならば接頭辞「有限」を省略しないのがふつう)ので注意が必要である[1]。
集合 X 上の完全加法族の定義は「集合 X の部分集合からなる族 Σ であって、可算回の合併、交叉と補演算という集合演算について閉じていて、合併についても交叉についても単位元を持つようなもの」である。
集合 X 上の σ-集合代数の定義は「X の部分集合の空でない族 Σ で、X 自身を含み、補集合を取る操作(補演算)および可算な合併に関して閉じているもの」である。
即ちこれは、有限加法族あるいは集合代数であって[注 2]、かつその演算を可算無限回まで含めて順序完備(英語版)化したものになっている。集合 X とその上の完全加法族 Σ との対 (X, Σ) は可測空間と呼ばれる集合体になる。
例えば X = {a, b, c, d} とすると、X 上の完全加法族となる集合族の一つは
Σ = {??, {a, b}, {c, d}, {a, b, c, d}?}
で与えられる。
より有用な例は、実数直線の部分集合族で、全ての開区間から始めて、それらの可算合併・可算交叉・補演算を取ることをそれらの演算がすべて閉じるようになるまで繰り返して(つまり、開区間を全て含む最小の完全加法族)得られる完全加法族である。得られた完全加法族はボレル σ-集合代数と呼ばれる(ボレル集合の項を参照)。

つづく
284
(2): 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:09 ID:INb7Gqhx(11/26)調 AAS
>>283 つづき

https://www.math.kyoto-u.ac.jp/~hino/index_j.html
日野正訓のホームページ 京都大学 大学院理学研究科 数学教室
https://www.math.kyoto-u.ac.jp/~hino/jugyou.html
2017年度授業関係資料等(日野正訓)
https://www.math.kyoto-u.ac.jp/~hino/jugyoufile/AnalysisI170418.pdf
解析学I(2016年度前期)日野正訓 京大 20170622版
(抜粋)

0.4 記号の約束など
集合R ∪ {±∞} をR~ で表す*)18.+1をしばしば単に1とかく.R での演算等を以下のように
定める.(以下,複号同順)
実数に関する演算は通常通り.
a ∈ R に対して,-∞ < a < +∞
a ∈ R に対して,
? a + (±∞) = ±∞, ±∞+ a = ±∞
? a > 0 のとき,a x (±∞) = ±∞, ±∞x a = ±∞
? a < 0 のとき,a x (±∞) = ?∞, ±∞x a = ? ∞

注*)18 R の位相については,x ∈ R の基本近傍系はR でのそれと同じで,
+∞ の基本近傍系を{a,+∞] | a ∈ R},
-∞の基本近傍系を{-∞, a] | a ∈ R} と定める.一般位相について不得意な人は
「実数列が正(負)の無限大に発散するときR においては+∞,-∞ に収束すると解釈する」と理解しておけば間違いはない.

つづく
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.041s