[過去ログ] 現代数学の系譜 古典ガロア理論を読む35 [無断転載禁止]©2ch.net (667レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
275
(2): 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:02 ID:INb7Gqhx(2/26)調 AAS
>>274 つづき

そこで
>>235の補足資料下記追加(このスレの余白は十分ありますので(^^)

>Lebesgue 積分論のp.21 >>203
> http://www.ma.noda.tus.A^c.jp/u/sh/pdfdvi/ana1.pdf
これ、下記やね
http://wiki.ma.noda.tus.A^c.jp/pk/ma/
東京理科大 数学科
http://www.ma.noda.tus.A^c.jp/u/sh/
S.HIRABA's Study Room 平場 誠示 [平場研究室] Mathematics and Probability [数学と確率]
http://www.tus.ac.jp/ridai/doc/ji/RIJIA01Detail.php?act=&kin=ken&diu=33b8
平場 誠示 教授 東京理科大学 理工学部 数学科
1993-1999 大阪市立大学理学部助手
1999-2000 大阪市立大学理学部講師
2000-2003 東京理科大学理工学部講師
2003-2007 東京理科大学理工学部助教授
2007-  東京理科大学理工学部准教授

つづく
276
(5): 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:03 ID:INb7Gqhx(3/26)調 AAS
>>275 つづき

http://www.ma.noda.tus.A^c.jp/u/sh/
講義ノート 平場 誠示

http://www.ma.noda.tus.A^c.jp/u/sh/pdfdvi/ana1.pdf
(上記>>203Lebesgue 積分論に同じ)解析学 1 (3年通年)37p ルベーグ積分論 ana1.pdf 419kb ('16/12/01)
(抜粋)
1.1 測度とは何か?

高校までに1 点の長さは0 として, 区間[0, 1] の長さは1 として習って来たであろう.
では次の計算はどこがおかしいのだろうか?(ここでは長さを| ・ | を用いて表す.)
1 = |[0, 1]| = Σ {x∈[0,1]} |{x}| = 0.
区間[a, b] (a < b) の長さをb ? a と定義するのは問題ないであろう.
では1 点の長さを0 とするのがまずいのであろうか?
しかしこれを正とすると, 場所に寄って長さが変わるというのは考えにくいので, 全て同じ値として, それを無限にたすと無限大になり, 1 = ∞ となってしまう.
それに|{x}| ? |[x, x + 1/n]| = 1/n → 0 (n → ∞) から|{x}| = 0 とするのも妥当であろう.

答えは, 実は, 上の足し算がまずいのである.
我々に許される足し算は有限和の極限としての無限和, 即ち, 可算までなのである.
無限和=可算無限和=有限和の極限.

では長さの測れ
る集合(可測集合) とはどのようなものであろうか?それがLebesgue 可測集合と呼ばれるもので,

測度とはこのように測れる集合や許される演算などを明確にし, 長さというものをより厳密にし,
さらに一般化したものを表すのである.
大事なことは, 全ての演算が可算無限までしか許されないということである.

つづく
294: 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:39 ID:INb7Gqhx(21/26)調 AAS
>>275 直接関係ないが、検索でヒットした面白そうな資料追加

http://www.ma.noda.tus.A^c.jp/u/sh/pdfdvi/anaSP3.pdf
解析学特論3 (4年前期)29p Lebesgue 積分の応用 (旧 解析学2) 平場 誠示 ('16/06/28)

下記、追加資料(確率論) 阪井章先生、前半の確率の歴史がなかなか面白い
(関数環と近似問題(「数学」の論文)は、中身はムズくて読めなかった。(^^)
http://isw3.naist.jp/home-ja.html
奈良先端科学技術大学院大学
http://isw3.naist.jp/IS/Curriculum/05/outline/05-introduction_to_mathematical_science_ii.html
数理科学概論U Introduction to Mathematical Science U 阪井 章 2005
http://isw3.naist.jp/IS/Curriculum/05/outline/05-introduction_to_mathematical_science_ii/probability.pdf
追加資料(確率論) 阪井章 奈良先端科学技術大学院 2006
(抜粋)

例1.2  任意の集合- と- の部分集合の全部の集合F を考える.- の1点!0 とm > 0
に対して,
ωo ∈ A →  μ(A) = m,   ωo not∈ A →  μ(A) = 0
と定義すると,{Ω,F, μ} は測度空間である.この測度を質量m の点質量point mass
という.とくに,m = 1 のときは,ディラック測度Dirac measure という.

https://www.jstage.jst.go.jp/article/sugaku1947/28/1/28_1_25/_article/-char/ja/
https://www.jstage.jst.go.jp/article/sugaku1947/28/1/28_1_25/_pdf
関数環と近似問題 阪井 章(阪大) 「数学」 Vol. 28 (1976) No. 1 P 25-34 (なお、不思議にこれの引用文献ページが抜けているようだ)
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.304s