[過去ログ] 現代数学の系譜 古典ガロア理論を読む35 [無断転載禁止]©2ch.net (667レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
241(1): 現代数学の系譜 古典ガロア理論を読む 2017/06/26(月)23:19 ID:fEMhvHu0(21/23)調 AAS
>>217-218
どうも。スレ主です。
>>229-233をご参照下さい。(長文ご容赦)
>箱の列の数を増やしても「決定番号の集合をKとして、集合Kの濃度」は有限
意味が分かりません。100列なら決定番号は100個、n列なら決定番号はn個です
それ以上に、なにかありますか??
箱の列の数が有限なら、1つの列に一つの決定番号が決まるという意味で、決定番号は当然有限です
一方、>>219 のID:PWssPK8Jさんが書かれているように、「決定番号の値域が自然数全体」だと
ここは、ポイントですね
つまり、>>231-233より、A5 5)〜9)に示しましたように、これを要約すると
「代表の数列rによる同値類の集合をTとすると、列の長さ(箱の個数)Lが有限であれば、濃度は有限だが、Lに依存し、濃度は増大する。
列の長さLが無限になれば、集合の濃度も無限になる。
任意の集合の元を取り出すと、代表の数列との比較で、決定番号dが定まる。」と
商集合の濃度が無限だから、決定番号dには上限がないと考える方が自然です。そして、実際そうなる。上記の通りです
247(1): 2017/06/27(火)01:57 ID:zx0Dh1dm(1)調 AAS
>>233
> Δ(s,r)= s-rとして、数列の差を取ったので、しっぽが消える。だから、数列の長さLが、有限か無限かには関係なく、成り立つ
sおよびrが無限数列の場合は無視してはダメですよ
> 列の長さLでL→∞の極限
sおよびrが無限数列の場合は極限をとる前に無視した0をすべて元に戻す必要がある
> Δ(s,r)= (b1,b2,b3 ,・・・,bd-1)
に書き直す際に可算無限個の0を取り除いているから可算無限個の0を戻せば極限をとる必要はない
>>241
> 時枝記事では確率 1-ε(= 可算無限個の箱の列の数は有限である)
> と書いてあるので箱の列の数を増やしても「決定番号の集合をKとして、集合Kの濃度」は有限
と書いてありますよね
箱の列の数は
1列目: a1, a2, ... , an, ... : 決定番号d1
2列目: b1, b2, ... , bn, ... : 決定番号d2
3列目: c1, c3, ... , cn, ... : 決定番号d3
以下同様に続ければ
100列目: 決定番号d100
自然数全体の集合は可算無限濃度ですし自然数に上限はありません
しかしその部分集合では話が変わります
たとえば部分集合{2, 4, ... , 2n, ... }は可算無限濃度で2nに上限はありませんが部分集合{1, 3, 5}は有限濃度で上限は5です
1 < 2 < 3 < ... < n < ... から有限個を取り出した場合は必ず上限(最大値)が決まります
> 100列なら決定番号は100個
ならば有限濃度なので上限max{d1, d2, ... , d100}は存在します
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.034s