[過去ログ] 現代数学の系譜 古典ガロア理論を読む35 [無断転載禁止]©2ch.net (667レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
228(1): 現代数学の系譜 古典ガロア理論を読む 2017/06/26(月)22:50 ID:fEMhvHu0(8/23)調 AAS
>>227 つづき
3)西山 茂 小樽商科大学ビジネススクール
http://www.otaru-uc.ac.jp/~nisiyama/Books/KisoToukei/KisoToukei.html 平成29年2月20日
「基礎の徹底統計学」(エコノミスト社) (2004/03)
http://www.otaru-uc.ac.jp/~nisiyama/Books/KisoToukei/EbookTextChapter2.pdf
第2章 確率分布
(抜粋)
2.2 離散型変数から連続型変数へ
閉区間[0,1]内の任意の実数を「等しい確率」でとる確率変数Xを考えてみよう。横軸にXがとる値、縦軸に確率をとって、確率変数X の確率分布図を描くことができるだろうか。この場合、Xのとる値は任意の実数だから、根元事象は一つ一つの実数値のように思われる。
しかし実数は[0,1]内に無限個あるので古典的確率を考えることはできない。さらに確率分布を「棒グラフ」として描くこと自体が不可能になることは明白であろう。連続型確率変数の確率分布を考えるときには、離散型変数とは違った表現の仕方をする必要が出てくる。
確率分布を描くことができないにせよ、たとえばXが0から1/2までの値をとる確率が0.5であることは直観的に明らかだろう。ということはP(0.5 ≦X≦1)=1-0.5=0.5となるはずである。今度は区間[0,0.5]内で同様に考えるとP(0≦X≦1/4)=0.25になるはずである。
このように個々の実数値を根元事象と考えると妙な話しになってしまうが、「確率は起こりうる事象を集めた集合の部分集合に対して与える数値である」という基本にさかのぼると、いまの例では区間[0,1]の部分区間に対して確率を定めればよいことがわかる。
区間[0,1]の長さは1だから、その区間の部分集合、つまり任意の区間に対して、区間の長さを確率にとればよいわけである。こうすると連続型確率変数でも離散型確率変数と同じ考え方で確率分布を考えることが可能になる。
区間の長さを確率にすればよいと述べたが、それは区間[0,1]の中のどの値も等しい可能性でとるような確率変数を考えているからである。一般的には、Xの値の中でも現れやすい値と現れにくい値がある。
そこで連続型確率変数の分布を表現するには、図2.2のように全面積が1となるような曲線f(x)で分布の形状を示し、確率変数Xが区間[a,b]に入る確率P(a≦X≦b)は
(式略)
のように積分計算をして面積で表す。図2.2で斜線をつけているのはP(X ≦a)である。
つづく
229(4): 現代数学の系譜 古典ガロア理論を読む 2017/06/26(月)22:51 ID:fEMhvHu0(9/23)調 AAS
>>228 つづき
A3.(以下、回答ですが、上記の3つの文献を根拠にした回答であることを最初にご注意申し上げておきます。おかしな突っ込みは、自爆ですよ。)
1)さて、今回の時枝問題では、まず、箱にサイコロの6までの数を入れることを考えよう。
上記重川先生の「例1.1 サイコロ投げの場合」に範を取れば、
「Ω={1,2,・・・,6}^N ∋ ω=(ω1,ω2,・・・) ωn は1,2,・・・,6 のいずれかで,n 回目に出た目を表す.
確率は
η1, η2,・・・ηn
を与えて P(ω1=η1,ω2=η2,・・・ωn=ηn)=1/6^n」
ここで、事象の族Fが「σ-加法的に拡張できること」は、重川先生を信じてスルーさせてもらう。
{1,2,・・・,6}^Nで、Nを自然数に取ることができるので、可算無限の箱に対応できる。
各箱1つの数当ての確率は1/6
(繰り返すが、確率空間(Ω、F、P)で、ΩとPは上記の通り。Fはσ-加法的に拡張できる範囲で事象を考えると。)
2)サイコロを10面にして0〜9までの数を入れこともできる。同様に、結論だけ書けば、各箱1つの数当ての確率は1/10
3)サイコロをP面にして0〜(P−1)までの数を入れこともできる。同様に、結論だけ書けば、各箱1つの数当ての確率は1/P
箱に入れる数として、自然数全体として、P→∞を考えると、各箱1つの数当ての確率は1/P→0に収束する
(P面サイコロより、ルーレット式でP個のポケットがイメージし易いだろう)
つづく
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.042s