[過去ログ] 現代数学の系譜 古典ガロア理論を読む35 [無断転載禁止]©2ch.net (667レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
141
(13): 現代数学の系譜 古典ガロア理論を読む 2017/06/23(金)09:16 ID:GDLxUv2f(5/21)調 AAS
>>139
どうも。スレ主です。

Q
>結論だけは、不同意
とはいえません
あなたは無限列の場合、決定番号の次の箱があることに同意した
つまり、代表元の情報から予測できる箱があることに同意したわけです
違いますか?
Y or N

A
残念ながら、不同意Nです。
補足
1.有限の列で、箱に入れる数をP進数にしたときは、可能です。
2.例えば、箱が3つで、2進数を入れるとする
  場合の数は、>>64の通り計算可です。
  場合の数は、全体で2^3=8通り。
  決定番号が2以下になる場合の数、2^2=4通り。
  決定番号が3になる場合の数、2^3−2^2=4通り。
3.ですので、決定番号が2以下になると仮定して、3番目の箱を開けて、2番目の箱を当てる確率は1/2となる。
  これは理論通りの1/2と一致します。(>>56 Sergiu Hart氏のPDF で P2の最後のRemarkの内容とも一致)
4.さて、一般の場合にも、>>64にならって、p進数で列が有限長Lならば
  決定番号がk(1〜(L-1))になる場合の数は、p^(L-1)です。全体はp^Lです。
  (なお、決定番号がk(L)になる場合の数は、p^(L)−p^(L-1) =(p-1)(p^(L-1))です)
5.上記3項と同様に、決定番号が(L-1)以下になると仮定して、L番目の箱を開けて、(L-1)番目の箱を当てる確率はp^(L-1)/p^L=1/pとなる。
  (>>56 Sergiu Hart氏のPDF で P2の最後のRemarkの内容と一致)
6.ここで、L→∞を考えることができる ∵>>135の通り”決定番号の集合をKとして、集合Kの濃度は可算無限”だから
  この場合、L→∞の極限では、1<= L <∞ の決定番号は、零集合として存在しうる (参考 https://ja.wikipedia.org/wiki/%E6%B8%AC%E5%BA%A6%E8%AB%96 測度論の零集合 (null set ) ご参照 )>>80
7.なお、p→∞(任意の実数の場合を含む)を考えることもできる。有限列無限列とも。この場合は、各箱の数を的中できる確率は0となる。

以上
150: 現代数学の系譜 古典ガロア理論を読む 2017/06/23(金)11:31 ID:GDLxUv2f(13/21)調 AAS
>>146 補足

可測非可測について、時枝先生は、>>14
「R^N/〜 の代表系を選んだ箇所で選択公理を使っている.
その結果R^N →R^N/〜 の切断は非可測になる.
ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」
「逆に非可測な集合をこさえるには選択公理が要る(ソロヴェイ, 1970年)から,この戦略はふしぎどころか標準的とさえいえるかもしれない.
しかし,選択公理や非可測集合を経由したからお手つき, と片付けるのは,面白くないように思う.」

と、”非可測だから・・”(この解法は従来の測度論的確率論と合わなくても良いのだ) という理由付けをしている

だが、>>36に書いたように、
「Sergiu Hart氏
”Remark.
When the number of boxes is finite Player 1 can guarantee a win with probability 1 in game1,
and with probability 9/10 in game2,
by choosing the xi independently and uniformly on [0, 1] and {0, 1, ..., 9}, respectively.”
を、認めるとしましょう
そうすると、”ボックスの数が有限の場合と、無限の場合で、全く違う”ということに、数学的な説明が必要だ
(∵ 「100列で、最大値は1つだから、確率99/100」というなら、それは有限無限両方で成立するから )
すぐ思いつくことは、繰り返すが、先に列記したように
1.可測 or 非可測
2.「数列のしっぽで同値類を考え商集合を作る→代表元を決める→問題の数列との比較で決定番号を決める→100列で大小比較する→最大値が1つ。99は、最大値以下」の議論のプロセスの中で、「有限の場合と、無限の場合で、何が違うのか?」ということ」
なのだと。

つまり、論点は二つある

可測 or 非可測も、もちろん大事だと思う。が、game2ではフルパワーの選択公理を使わないというから、game2は可測の範囲
なので、”非可測ゆえ この解法は従来の測度論的確率論と合わなくても良いのだ ”という理由付けだけでは面白くない

で、可測でも、時枝解法不成立となるのは、なぜか?
それが、>>141に書いたこと。列の有限無限が決定的ですよと
161: 現代数学の系譜 古典ガロア理論を読む 2017/06/23(金)15:11 ID:GDLxUv2f(19/21)調 AAS
>>160 つづき
1.(命題A)で:”選択公理を使って
 無限列から決定番号への非可測関数を構築すれば
「箱入り無数目」解法による予測は避けられないよ”
 については、自称 数学科卒さん、前スレ34のNo421で言っていたが、「(命題A)は「箱入り無数目」で証明済」と。
 だが、これは大いなる勘違いだった。>>141に示した通りだ
 かつ、時枝も記事の中で、>>14-15のように、非可測と、独立な確率変数の無限族と、二つ訳分からん言い訳をしていることを見落としたね
2.(命題B)で:”「X1,X2,X3,・・・がまるまる無限族として独立なら絶対に当てられない」
 と言い切るなら、必然的に
 「実数の全ての集合はルベーグ可測であり選択公理は成立しない」
 といわざるを得なくなる”
 については、自称 数学科卒さん、前スレ34のNo421で言っていたが、「(命題B)は、「当たりっこない」を前提した場合(命題A)の対偶にすぎない」と。
 だが、これも大いなる勘違いだった。
 かつ、勝手に、”「当たりっこない」を前提した場合”とか、数学では禁じ手の明言していない前提を忍び込ませたんだ
3.だが、さすがに、かれは私が前スレ34 No139で(2017/06/05)で追求したあと、No409で(2017/06/10)「おれが本人だ」と名乗り出るまで約5日潜行していた。
 まあ、自分がミスったことが分かったんだろう

以上
162: 2017/06/23(金)15:21 ID:l8Hlfl44(2/5)調 AAS
>だが、これは大いなる勘違いだった。>>141に示した通りだ
>>141で何を示したつもりなんだろう??

>かつ、時枝も記事の中で、>>14-15のように、非可測と、独立な確率変数の無限族と、二つ訳分からん言い訳をしていることを見落としたね
言い訳?お前が勘違いしてるだけ。
記事のその部分(後半部分)に対する解釈は既に示されているから、反論があるならそのレスに
具体的に反論しなさい。
163
(1): 2017/06/23(金)17:18 ID:FLR7NcTK(5/6)調 AAS
>>141
1.〜5.については全くその通りです、しかし

>6.ここで、L→∞を考えることができる

とありますが、できません

なぜなら
「上限値Lは存在しない、∞は上限値Lではない」
からです。

つまり、P^(∞-1)/p^∞=1/pという計算はできません

>∵”決定番号の集合をKとして、集合Kの濃度は可算無限”だから

意味不明ですね・・・熱があるなら、
ネットにアクセスしないほうがいいですよ

ついでですが
7についても「有限列無限列とも」を除いて、有限列で考えた場合、
「各箱の数を的中できる確率は0となる」というのはその通りです
166: 2017/06/23(金)17:23 ID:FLR7NcTK(6/6)調 AAS
>>141
P.S.
>この場合、L→∞の極限では、1<= L <∞ の決定番号は、零集合として存在しうる

ここは
「1<=L <∞の決定番号」ではなく、
「1<=D <∞の決定番号」でしょう

Lは上限値であって、決定番号DはL未満の値も取りますから
167: 2017/06/23(金)17:40 ID:l8Hlfl44(3/5)調 AAS
>>141で時枝先生に勝ったつもりでいる哀れな工学崩れ
168
(2): 2017/06/23(金)19:19 ID:Wf0Q2EbY(2/2)調 AAS
>>135
> 「後者」がωとなるような(順序数としての)自然数は存在しない (**)
ωを可算無限個と書いても内容は変わらないですし上記のことは数当て戦略に必要です

>>141
> 任意の自然数nについても、必ず可算無限の後者が存在しますよ。
を言い換えると
無限数列の場合は決定番号(自然数)より後ろの可算無限個の項は全て代表元と一致する (***)

> L→∞を考えることができる
(**)が必要な理由は有限数列の項を増やして無限数列にする場合に有限回のステップで増やすことを要請するから
逆に「後者」がω(可算無限)となるような自然数が存在すれば順々に増やして無限回のステップで無限数列にできる

有限回のステップなので最後のステップは可算無限個の項を一度に加えることになる

> 「sとrとがそこから先ずっと一致する番号をsの決定番号と呼び,d = d(s)と記す」
であってrnを完全代表系から選んだ代表元とすると
(1) 有限個の項を加えることを有限回繰り替えす s1-r1, s2-r2, ... , sD-rD
(2) 最後のステップで可算無限個の0を一度に加えると s1-r1, s2-r2, ... , sD-rD, 0, 0, 0, ...

ある自然数Dがあってn > Dならば |(sn-rn) - 0|=0 と書けるからlim_{n→∞}(sn-rn) = 0となってsn-rnの
極限は0に収束し決定番号はD+1

つまり時枝記事で有限数列の長さの極限をとって無限数列にするということは有限数列 s1, s2, ... , sD の後ろに
代表元から得られる可算無限個の r(D+1), r(D+2), ... を加えた無限数列を得ることである
(代表元を1つ選び有限個の項の値を任意の値に変えても同じ無限数列を得ることができる)

箱の数を可算無限個に増やしても決定番号は同じようには増えず (***)もそのまま成り立つ
174
(2): 2017/06/23(金)23:37 ID:wNh4SQip(1)調 AAS
>>141はいくらなんでもトンデモ過ぎ(笑)

「可算無限だから零集合」が唐突過ぎるだろ。
それを言ったら有限のLでもことごとくルベーグ測度ゼロなのだが。

有限のLではきちんと数え上げ測度で話を進めていたのに、
急に連続空間上のルベーグ測度に話を移すところが意味不明で怖い。。。

最後に「以上」とドヤ顔で締めくくるところがまた味わい深い。
お前は一体何を示したつもりなのか?とクスッとさせるところがイイ。
178
(3): 174 2017/06/24(土)11:45 ID:lFFD8KU4(1)調 AAS
>>175
そう投げやりになりなさんな。

確認しましょう。スレ主さんは

>>141
> この場合、L→∞の極限では、1<= L <∞ の決定番号は、零集合として存在しうる

『よって決定番号が有限の値を取る確率は0である』

そう言いたいんでしょ? Yes or No?

P.S.私はスレ主の理解者ですよ
187
(6): 現代数学の系譜 古典ガロア理論を読む 2017/06/24(土)16:38 ID:IFjkOwpb(4/5)調 AAS
>>178
どうも。スレ主です。
レスありがとう

>> この場合、L→∞の極限では、1<= L <∞ の決定番号は、零集合として存在しうる
>『よって決定番号が有限の値を取る確率は0である』
>そう言いたいんでしょ? Yes or No?

もちろん、Yesですが、力点は、”存在しうる”のところにあります。

補足1
・任意のn∈N(自然数)に対して、決定番号がnとなる数列が必ず構成できます
・ところが、任意のnに対して、決定番号がn+1(nの後者)となる数列も必ず構成できます
・そして、決定番号がn+1となる数列の方が、場合の数としては圧倒的に多い。nまでの場合の数の(p-1)倍です (>>141のAの4項ご参照)
・決定番号がn+2となる数列も同様に考えられて、n+1までの場合の数の(p-1)倍です。・・と無限につづきます

補足2
・上記補足1に示したように、決定番号の出現確率は、決定番号が大きくなるほど、大きくなります
・さて、下記URLの「さまざまな確率分布」を見て下さい
・正規分布や対数正規分布など、確率変数Xの区間が X < ∞の確率分布がありますが、必ず X → ∞で、その出現頻度は0に減衰します
・もし、 X → ∞で、その出現頻度は0に減衰しなければ、母数は∞になり、数学として取り扱うことは困難になります
・決定番号の出現確率は、上記のように、 X → ∞で、その出現頻度は0に減衰しません

(参考)
http://www.biwako.shiga-u.ac.jp/sensei/mnaka/ut/statdist.html
さまざまな確率分布 probability distributions - 数理的思考 - 中川雅央 【知と情報の科学】
(抜粋)
 観測されたデータを説明する統計モデルに,どの確率分布を使えばうまく説明できるでしょうか.
 正規分布や二項分布など,確率分布の種類は数多く,いろいろなカタチ(分布形)があります.確率分布の当てはめを考えるには,そのカタチ(分布形)を知ることが重要です.

2. 連続型確率分布 (Continuous probability distributions)
 確率変数がある区間内の全ての実数を取り得る場合は「連続型」といいます.連続型のグラフは,横軸の確率変数が連続量なので,縦軸はその値での確率密度を表しており,区間内(横軸のある値とある値の間)を積分した面積がその確率に相当します.
218
(1): 2017/06/25(日)23:56 ID:ay7vpNG9(1)調 AAS
>>217
> と書いてあるので箱の列の数を増やしても「決定番号の集合をKとして、集合Kの濃度」は有限

よく理解されているようですが。。。

保証しよう。スレ主は絶対に上の一文を理解できないw
というか理解する気はさらさらなく、
「なんにしてもKは高々可算だから零集合。よって確率はゼロだろ?」
とか言い出すに違いないw
(cf. >>141 >>187
244
(3): 2017/06/26(月)23:51 ID:jtZYaAWs(1)調 AAS
>>221-233

私の問いは『確率空間を書いてください』です。
余計なことは言いませんので、あなたも余計なことは書かないでください。

>>196
> >>187
> > > > この場合、L→∞の極限では、1<= L <∞ の決定番号は、零集合として存在しうる
> > >『よって決定番号が有限の値を取る確率は0である』
> > >そう言いたいんでしょ? Yes or No?
> >
> > もちろん、Yesですが、力点は、”存在しうる”のところにあります。
>
> ではあなたが考えた確率空間を書いてみなさい。
> 確率空間の設定なしにP(K)=0を結論することはできない。
>
> きちんと書いておこう。
> 全事象をΩ、K={k∈N | 1≦k<∞}とする。
> Kは事象の族F⊂2^Ωの元でなければならず、
> さらにP(Ω)=1、P(K)=0を満たす必要がある。
> これを満たすという、あなたが考えた確率空間を書いてみなさい。

改めてあなたが>>141で考えた確率空間について以下の質問に答えてください。

問1:
P(K)=0, P(Ω)=1となるΩの定義を式で書いてください。
(2chに書きたくないなら別のところでも構いません。きちんと式で書いてください。)

※ここでK⊂2^Ω, K={k∈N | 1≦k<∞}である。
すなわちΩは自然数全体を含むことに注意せよ。

問2:
Kが加法族Fの元でP(K)=0ならば、Kの補集合K~もまたFの元でありP(K~)=1である。
このことに注意して、確率が1となる事象K~を明記してください。

※事象K~⊂Ωにどのような元が含まれるのか?
ここを曖昧にせぬよう、事象K~をきちんと式で書いてください。
287
(2): 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:17 ID:INb7Gqhx(14/26)調 AAS
>>286 つづき

さて、上記を踏まえて、本題
>>244-245
>改めてあなたが>>141で考えた確率空間について以下の質問に答えてください。

>>276 まず、平場先生
「我々に許される足し算は有限和の極限としての無限和, 即ち, 可算までなのである.
無限和=可算無限和=有限和の極限.」(σ-集合体)
を押さえておきましょう。

そして、この視点から見ると
1)箱が1つ、箱に任意の実数 r ∈ (0,1] が入り、箱を開けずに数を的中する確率は? 当然、直感的には0であるし、非加算無限分の1だ。が、σ-集合体(可算)をベースとする確率空間は、構築できない。
2)箱が1つ、箱に任意の有理数 q ∈ (0,1] が入り、箱を開けずに数を的中する確率は? 当然、直感的には0であるし、加算無限分の1だ。が、σ-集合体をベースとする確率空間は、構築できない。
(ここは、>>277 の平場先生 「 問2.2 次の集合族A は集合体であるがσ-集合体ではないことを示せ.(1) X が無限集合のとき{A ⊂ X : A かA^c が有限集合(Φ も含む)}」から、”σ-集合体ではない”が言える思う。・・が、実はよく理解できなかった(証明は下記OKWAVEにあるようだ。ご参照 )(^^ )
https://okwave.jp/qa/q5924861.html aiaiai21 OKWAVE 2010-05-27
Q.σ-集合体について
(1)Ωは無限集合であるとする。
A={A⊂Ω:AまたはA^cが有限集合か空集合}
この集合族Aは集合体であるがσ-集合体ではないことを示せ。

質問者が選んだベストアンサー muturajcp 2010-05-31


つづく
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.031s