[過去ログ] 現代数学の系譜 古典ガロア理論を読む35 [無断転載禁止]©2ch.net (667レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
139(1): 2017/06/23(金)07:14 ID:FLR7NcTK(3/6)調 AAS
>>135
>ほとんど同じ意見ですよ
いや、全く同じ意見ですよ
なぜなら
>あなたは、決定番号が有限だと思い込んでいる。
というのは、全くの誤解だからです。
私は>>133で
>無限列の場合、決定番号に上限値はない
と言い切ってますから
決定番号(の全体)が有限(集合)だと思い込むわけがない
したがって
>結論だけは、不同意
とはいえません
あなたは無限列の場合、決定番号の次の箱があることに同意した
つまり、代表元の情報から予測できる箱があることに同意したわけです
違いますか?
Y or N
141(13): 現代数学の系譜 古典ガロア理論を読む 2017/06/23(金)09:16 ID:GDLxUv2f(5/21)調 AAS
>>139
どうも。スレ主です。
Q
>結論だけは、不同意
とはいえません
あなたは無限列の場合、決定番号の次の箱があることに同意した
つまり、代表元の情報から予測できる箱があることに同意したわけです
違いますか?
Y or N
A
残念ながら、不同意Nです。
補足
1.有限の列で、箱に入れる数をP進数にしたときは、可能です。
2.例えば、箱が3つで、2進数を入れるとする
場合の数は、>>64の通り計算可です。
場合の数は、全体で2^3=8通り。
決定番号が2以下になる場合の数、2^2=4通り。
決定番号が3になる場合の数、2^3−2^2=4通り。
3.ですので、決定番号が2以下になると仮定して、3番目の箱を開けて、2番目の箱を当てる確率は1/2となる。
これは理論通りの1/2と一致します。(>>56 Sergiu Hart氏のPDF で P2の最後のRemarkの内容とも一致)
4.さて、一般の場合にも、>>64にならって、p進数で列が有限長Lならば
決定番号がk(1〜(L-1))になる場合の数は、p^(L-1)です。全体はp^Lです。
(なお、決定番号がk(L)になる場合の数は、p^(L)−p^(L-1) =(p-1)(p^(L-1))です)
5.上記3項と同様に、決定番号が(L-1)以下になると仮定して、L番目の箱を開けて、(L-1)番目の箱を当てる確率はp^(L-1)/p^L=1/pとなる。
(>>56 Sergiu Hart氏のPDF で P2の最後のRemarkの内容と一致)
6.ここで、L→∞を考えることができる ∵>>135の通り”決定番号の集合をKとして、集合Kの濃度は可算無限”だから
この場合、L→∞の極限では、1<= L <∞ の決定番号は、零集合として存在しうる (参考 https://ja.wikipedia.org/wiki/%E6%B8%AC%E5%BA%A6%E8%AB%96 測度論の零集合 (null set ) ご参照 )>>80
7.なお、p→∞(任意の実数の場合を含む)を考えることもできる。有限列無限列とも。この場合は、各箱の数を的中できる確率は0となる。
以上
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.031s