[過去ログ] 現代数学の系譜 古典ガロア理論を読む35 [無断転載禁止]©2ch.net (667レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
135(9): 現代数学の系譜 古典ガロア理論を読む 2017/06/23(金)06:39 ID:GDLxUv2f(1/21)調 AAS
>>130-131
どうも。スレ主です。
難しく考えすぎでは?
私の主張は
「時枝記事で、任意の自然数n∈N(自然数の集合)に対し、決定番号がnとなる同値類が構成できる。
従って、決定番号の集合をKとして、集合Kの濃度は可算無限。」と単純です
(略証)
1.>>93より引用
”「全部の項が0の無限数列」と
「n番目までの項が1で、その後の全部の項が0の無限数列」は 同値”
↓
これを変形して、n>1で
「全部の項が0の無限数列」と
「n-1番目までの項が1で、その後の全部の項が0の無限数列」は 同値”とします
2.ここで、仮に代表元は「最初から全部の項が0の無限数列」とします(>>98)
そうすると、「n-1番目までの項が1で、その後の全部の項が0の無限数列」と代表元との比較で、決定番号はnです。
3.nとして、任意の自然数を取ることができます。QED
これで終りです。
追記
1.上記は略証ですが、添え字付きの文字*)を使った証明にできることには、同意頂けるとして略証としました。
注*)時枝>>12の「s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^N」のような書き方ですが、書くのも大変ですし、読む方も大変です。上記略証でご勘弁を。
2.任意の自然数nについて、>>88 現代数学における自然数の構成にならって、nの後者n+1、その後者n+1+1、その後者n+1+1+1、・・・と無限に続けることができます
そうすると、任意の自然数nについても、必ず可算無限の後者が存在しますよ。くどいですが、ここ良いですね
3.”超限順序数 ω”とかを持ち出されていますが、現代数学の確率論のテキストでは、”超限順序数 ω”は不要と思います。
”超限順序数 ω”を使わずに、可算無限と連続無限を扱っています。
例えば、>>57で紹介した 6章 確率分布 http://www.heisei-u.ac.jp/ba/fukui/pdf/stattext06.pdf などを見て下さい
もし、確率論で、”超限順序数 ω”を使った確率論のテキストがあれば教えて下さい。
なお、Sergiu Hart氏 PDF>>28、 mathoverflow >>23 とも、”超限順序数 ω”は登場していません
136: 現代数学の系譜 古典ガロア理論を読む 2017/06/23(金)06:58 ID:GDLxUv2f(2/21)調 AAS
>>133
ID:FLR7NcTKさん、どうも。スレ主です。
あなたは、良く分かっているじゃないですか
ほとんど同じ意見ですよ
ただし、違うのは、>>135に書いた
私の主張は
「時枝記事で、任意の自然数n∈N(自然数の集合)に対し、決定番号がnとなる同値類が構成できる。
従って、決定番号の集合をKとして、集合Kの濃度は可算無限。」
というところだけです。
あなたは、決定番号が有限だと思い込んでいる。でも、任意の決定番号nの後に必ずその後者n+1となる決定番号の列も可能だと
決定番号nの列と、決定番号n+1の列と、どちらの列の場合が多いか? 圧倒的に決定番号n+1の列の場合が多い (ここは、>>64と>>74に、あなた方が証明されている通りです。)
あなたの理解の通りですよ
但し、「決定番号の集合をKとして、集合Kの濃度は可算無限」だから、上記が無限に繰り返されていくということですよ
なので、結論だけは、不同意だと
139(1): 2017/06/23(金)07:14 ID:FLR7NcTK(3/6)調 AAS
>>135
>ほとんど同じ意見ですよ
いや、全く同じ意見ですよ
なぜなら
>あなたは、決定番号が有限だと思い込んでいる。
というのは、全くの誤解だからです。
私は>>133で
>無限列の場合、決定番号に上限値はない
と言い切ってますから
決定番号(の全体)が有限(集合)だと思い込むわけがない
したがって
>結論だけは、不同意
とはいえません
あなたは無限列の場合、決定番号の次の箱があることに同意した
つまり、代表元の情報から予測できる箱があることに同意したわけです
違いますか?
Y or N
141(13): 現代数学の系譜 古典ガロア理論を読む 2017/06/23(金)09:16 ID:GDLxUv2f(5/21)調 AAS
>>139
どうも。スレ主です。
Q
>結論だけは、不同意
とはいえません
あなたは無限列の場合、決定番号の次の箱があることに同意した
つまり、代表元の情報から予測できる箱があることに同意したわけです
違いますか?
Y or N
A
残念ながら、不同意Nです。
補足
1.有限の列で、箱に入れる数をP進数にしたときは、可能です。
2.例えば、箱が3つで、2進数を入れるとする
場合の数は、>>64の通り計算可です。
場合の数は、全体で2^3=8通り。
決定番号が2以下になる場合の数、2^2=4通り。
決定番号が3になる場合の数、2^3−2^2=4通り。
3.ですので、決定番号が2以下になると仮定して、3番目の箱を開けて、2番目の箱を当てる確率は1/2となる。
これは理論通りの1/2と一致します。(>>56 Sergiu Hart氏のPDF で P2の最後のRemarkの内容とも一致)
4.さて、一般の場合にも、>>64にならって、p進数で列が有限長Lならば
決定番号がk(1〜(L-1))になる場合の数は、p^(L-1)です。全体はp^Lです。
(なお、決定番号がk(L)になる場合の数は、p^(L)−p^(L-1) =(p-1)(p^(L-1))です)
5.上記3項と同様に、決定番号が(L-1)以下になると仮定して、L番目の箱を開けて、(L-1)番目の箱を当てる確率はp^(L-1)/p^L=1/pとなる。
(>>56 Sergiu Hart氏のPDF で P2の最後のRemarkの内容と一致)
6.ここで、L→∞を考えることができる ∵>>135の通り”決定番号の集合をKとして、集合Kの濃度は可算無限”だから
この場合、L→∞の極限では、1<= L <∞ の決定番号は、零集合として存在しうる (参考 https://ja.wikipedia.org/wiki/%E6%B8%AC%E5%BA%A6%E8%AB%96 測度論の零集合 (null set ) ご参照 )>>80
7.なお、p→∞(任意の実数の場合を含む)を考えることもできる。有限列無限列とも。この場合は、各箱の数を的中できる確率は0となる。
以上
168(2): 2017/06/23(金)19:19 ID:Wf0Q2EbY(2/2)調 AAS
>>135
> 「後者」がωとなるような(順序数としての)自然数は存在しない (**)
ωを可算無限個と書いても内容は変わらないですし上記のことは数当て戦略に必要です
>>141
> 任意の自然数nについても、必ず可算無限の後者が存在しますよ。
を言い換えると
無限数列の場合は決定番号(自然数)より後ろの可算無限個の項は全て代表元と一致する (***)
> L→∞を考えることができる
(**)が必要な理由は有限数列の項を増やして無限数列にする場合に有限回のステップで増やすことを要請するから
逆に「後者」がω(可算無限)となるような自然数が存在すれば順々に増やして無限回のステップで無限数列にできる
有限回のステップなので最後のステップは可算無限個の項を一度に加えることになる
> 「sとrとがそこから先ずっと一致する番号をsの決定番号と呼び,d = d(s)と記す」
であってrnを完全代表系から選んだ代表元とすると
(1) 有限個の項を加えることを有限回繰り替えす s1-r1, s2-r2, ... , sD-rD
(2) 最後のステップで可算無限個の0を一度に加えると s1-r1, s2-r2, ... , sD-rD, 0, 0, 0, ...
ある自然数Dがあってn > Dならば |(sn-rn) - 0|=0 と書けるからlim_{n→∞}(sn-rn) = 0となってsn-rnの
極限は0に収束し決定番号はD+1
つまり時枝記事で有限数列の長さの極限をとって無限数列にするということは有限数列 s1, s2, ... , sD の後ろに
代表元から得られる可算無限個の r(D+1), r(D+2), ... を加えた無限数列を得ることである
(代表元を1つ選び有限個の項の値を任意の値に変えても同じ無限数列を得ることができる)
箱の数を可算無限個に増やしても決定番号は同じようには増えず (***)もそのまま成り立つ
211(1): 2017/06/25(日)09:21 ID:mZNqpxtD(3/5)調 AAS
>>135(=>>1)
>私の主張は
>「時枝記事で、任意の自然数n∈N(自然数の集合)に対し、
> 決定番号がnとなる同値類が構成できる。
> 従って、決定番号の集合をKとして、集合Kの濃度は可算無限。」
列の同値関係は、「決定番号が同じ」ではありませんよ
あくまで「ある箱から先の中身が全部一致すること」です
そして、上記の「ある箱」の位置を示すのが決定番号です
代表元というのも所詮同値類の中の1個でしかなく
同値類の中の他の元との決定番号は当然まちまちです
217(3): 2017/06/25(日)22:40 ID:zzi+dsjz(1)調 AAS
ついでにスレ主の主張に関して
>>87-88
2. N 「一つ一つ増やして」が間違い
無限集合が存在することを公理で保証する
最初から存在している無限個の要素間の性質を定義する
例
a1, a2, ... , an, ... が存在していてa1=0, ak=k+1, a(k+1)=suc(ak)=(k+1)+1
ならば0, 1, 2, ... , n, n+1, ...
1. Y そのように書いても良いですが
関数としての決定番号は可算無限数列と代表元をそれぞれ1つずつ入力すると決定番号(自然数)を1つ出力する関数なので
決定番号 d = d({sn}, {rn}) nは区間[1,∞)の間の自然数全体 のように書くことになります
重要なのは可算無限個の箱が1列あると決定番号は1つ決まるということです
>>135
> 私の主張は 「 (略)
> 従って、決定番号の集合をKとして、集合Kの濃度は可算無限。」と単純です
可算無限個の箱が100列あると決定番号の集合は濃度が100である自然数全体の集合Nの部分集合
時枝記事では確率 1-ε(= 可算無限個の箱の列の数は有限である)
と書いてあるので箱の列の数を増やしても「決定番号の集合をKとして、集合Kの濃度」は有限
219(2): 2017/06/26(月)06:27 ID:PWssPK8J(1/2)調 AAS
>>217
>>135の
「任意の自然数n∈N(自然数の集合)に対し、
決定番号がnとなる同値類が構成できる。」
を説明したらどうかな?
>>1氏に対して好意的に解釈すれば
「任意の自然数n∈N(自然数の集合)に対し、
決定番号がnとなる同値類”の集合”が構成できる。」
ただそう読んだところで
「従って、決定番号の集合をKとして、集合Kの濃度は可算無限。」
とはつながらない
そもそも「従って」抜きに、決定番号の定義から
決定番号の値域が自然数全体、すなわち可算無限
であることは明らかだから
289: 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:28 ID:INb7Gqhx(16/26)調 AAS
>>246
Q
">ええ、同意ですよ (=「決定番号が自然数である確率は当然1です」)
つまり ∞∈N であると?
決定番号=∞ があなたの持論ですよね?"
A
正確には下記
決定番号=∞
↓(下記に変更ください)
私の主張は
「時枝記事で、任意の自然数n∈N(自然数の集合)に対し、決定番号がnとなる同値類の数列が構成できる。
従って、”決定番号の重なる部分を纏めた集合”をKとして(注*)、集合Kの濃度は可算無限。」と単純です >>135 (注**)
注*) 箱には、任意の実数を入れるとすると、各決定番号dで、 2<= d の場合、dとなる数列は、非加算無限通り存在することを注意しておく
補足
注**) 詳しく書くと、K={1,2,・・,k,・・}だと。
自然数の集合N={1,2,・・,n,・・}として
K ⊂ Nは自明。一方で、任意の自然数 ∀n∈Nで、n∈Kとできる。(略証は>>135ご参照)
よって、N ⊂ K
∴ K=N
635(1): 2017/07/10(月)23:13 ID:y6VRSOZ2(1)調 AAS
>>624
> 極限 https://ja.wikipedia.org/wiki/%E6%A5%B5%E9%99%90
には
> 数列が収束しないとき、その数列は発散するという。特に、項数 n を限りなく大きくしていくとき、
> 数列の項の値 an が限りなく大きくなることを、数列 {an} は正の無限大に発散するといい、
> lim_{n→∞} an = ∞ または an→∞ (n→∞)のように表す。
> 集合N、集合Rにはノルム(距離)が入り、1<=n<∞、-∞<r<∞ である
スレ主は上の2つの∞を同じ意味だと思っているようだがスレ主が自分で書いているように
>>135
> 任意の自然数nについても、必ず可算無限の後者が存在しますよ。 (***)
これは自然数を順番に大きくしていっても可算無限(自然数全体の集合の濃度)には全く近づかないことを意味している
自然数の距離の単位は1であるからそれを自然数全体の集合の濃度card(N)にも使うと仮定すると
(***)は任意の自然数anとcard(N)の「距離は常に無限大」という意味になる
anが自然数ならば「lim_{n→∞} an = ∞」の∞は自然数の範囲で限りなく大きくなるという意味であって
可算無限(自然数全体の集合の濃度card(N))を意味しない
つまり lim_{n→∞} an = ∞(= 上限のない自然数) < (距離:無限大) < card(N) (= 可算無限濃度)
(距離の単位は1(自然数)なので箱の数に読みかえても良い)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.045s