[過去ログ] 現代数学の系譜 古典ガロア理論を読む35 [無断転載禁止]©2ch.net (667レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
133(3): 2017/06/23(金)06:23 ID:FLR7NcTK(1/6)調 AAS
>>123-124
>無限列でも、
>"by choosing the xi independently and uniformly on [0, 1] and {0, 1, ..., 9}, respectively.”
>が言えれば
そもそも、>>1氏は、なぜ有限列で上記が成り立つのか理解していないのでは?
有限列の場合、決定番号が上限値だったら、次の箱はない
だから、適当に開けてない箱を選んで、その中身を
記号の集まり( [0, 1] や {0, 1, ..., 9})から独立かつ一様に選ぶ
(choose independently and uniformly)しかない
そういうことですよ 分かってましたか?
Y or N
し・か・し、無限列の場合、決定番号に上限値はないから、
いかなる値をとったとしても、必ず次の箱がある
したがって、代表元の情報から予測できる
ただそれだけのことですよ 分かってましたか?
Y or N
136: 現代数学の系譜 古典ガロア理論を読む 2017/06/23(金)06:58 ID:GDLxUv2f(2/21)調 AAS
>>133
ID:FLR7NcTKさん、どうも。スレ主です。
あなたは、良く分かっているじゃないですか
ほとんど同じ意見ですよ
ただし、違うのは、>>135に書いた
私の主張は
「時枝記事で、任意の自然数n∈N(自然数の集合)に対し、決定番号がnとなる同値類が構成できる。
従って、決定番号の集合をKとして、集合Kの濃度は可算無限。」
というところだけです。
あなたは、決定番号が有限だと思い込んでいる。でも、任意の決定番号nの後に必ずその後者n+1となる決定番号の列も可能だと
決定番号nの列と、決定番号n+1の列と、どちらの列の場合が多いか? 圧倒的に決定番号n+1の列の場合が多い (ここは、>>64と>>74に、あなた方が証明されている通りです。)
あなたの理解の通りですよ
但し、「決定番号の集合をKとして、集合Kの濃度は可算無限」だから、上記が無限に繰り返されていくということですよ
なので、結論だけは、不同意だと
139(1): 2017/06/23(金)07:14 ID:FLR7NcTK(3/6)調 AAS
>>135
>ほとんど同じ意見ですよ
いや、全く同じ意見ですよ
なぜなら
>あなたは、決定番号が有限だと思い込んでいる。
というのは、全くの誤解だからです。
私は>>133で
>無限列の場合、決定番号に上限値はない
と言い切ってますから
決定番号(の全体)が有限(集合)だと思い込むわけがない
したがって
>結論だけは、不同意
とはいえません
あなたは無限列の場合、決定番号の次の箱があることに同意した
つまり、代表元の情報から予測できる箱があることに同意したわけです
違いますか?
Y or N
291: 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:31 ID:INb7Gqhx(18/26)調 AAS
>>248
Q
"長々と書いてるけど要は
「決定番号の確率分布が書き表せられない」
といいたいのかな?
そんなこと、今頃気づいたの?"
A
実は、類似のことを、1年ほど前に書いています。下記例など。複数回。
(参考例)
スレ18 2chスレ:math
155 自分:現代数学の系譜11 ガロア理論を読む[] 投稿日:2016/02/13(土) 08:11:22.87 ID:1yqxSAX/
(抜粋)
>>132 このモデルの場合、1列のパラメータ:列の長さL(箱の数)=∞、箱に入る数の集合の濃度=10
3.一つの同値類の集合には、無限の要素が含まれる。そして、決定番号は、ある極端な分布を持つ。決して一様分布ではない。決定番号が大きいほど存在する確率大
>>133 少数第n位の有限小数qは、場合の数としておよそ10^n通りある(正確には、少数第n位がゼロの場合は除かれるので、少し減る)。だから、位数nが大きいほど多くの有限小数がその同値類に属している。
(引用終り)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.031s